Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,6 @@ import os
|
|
4 |
from huggingface_hub import InferenceClient
|
5 |
from io import BytesIO
|
6 |
from PIL import Image
|
7 |
-
import threading
|
8 |
|
9 |
# Initialize the Flask app
|
10 |
app = Flask(__name__)
|
@@ -14,20 +13,14 @@ CORS(app) # Enable CORS for all routes
|
|
14 |
HF_TOKEN = os.environ.get("HF_TOKEN") # Ensure to set your Hugging Face token in the environment
|
15 |
client = InferenceClient(token=HF_TOKEN)
|
16 |
|
17 |
-
# Global variable to manage generation rejection state
|
18 |
-
generation_rejected = threading.Event()
|
19 |
-
|
20 |
@app.route('/')
|
21 |
def home():
|
22 |
return "Welcome to the Image Background Remover!"
|
23 |
|
|
|
24 |
# Function to generate an image from a text prompt
|
25 |
def generate_image(prompt, negative_prompt=None, height=512, width=512, model="stabilityai/stable-diffusion-2-1", num_inference_steps=50, guidance_scale=7.5, seed=None):
|
26 |
try:
|
27 |
-
# Check if generation has been marked for rejection
|
28 |
-
if generation_rejected.is_set():
|
29 |
-
return "rejected"
|
30 |
-
|
31 |
# Generate the image using Hugging Face's inference API with additional parameters
|
32 |
image = client.text_to_image(
|
33 |
prompt=prompt,
|
@@ -47,9 +40,6 @@ def generate_image(prompt, negative_prompt=None, height=512, width=512, model="s
|
|
47 |
# Flask route for the API endpoint to generate an image
|
48 |
@app.route('/generate_image', methods=['POST'])
|
49 |
def generate_api():
|
50 |
-
global generation_rejected
|
51 |
-
generation_rejected.clear() # Reset rejection state at the start of a new request
|
52 |
-
|
53 |
data = request.get_json()
|
54 |
|
55 |
# Extract required fields from the request
|
@@ -69,10 +59,6 @@ def generate_api():
|
|
69 |
# Call the generate_image function with the provided parameters
|
70 |
image = generate_image(prompt, negative_prompt, height, width, model_name, num_inference_steps, guidance_scale, seed)
|
71 |
|
72 |
-
# Check if the response was rejected
|
73 |
-
if image == "rejected":
|
74 |
-
return jsonify({"error": "Image generation was rejected."}), 400
|
75 |
-
|
76 |
if image:
|
77 |
# Save the image to a BytesIO object
|
78 |
img_byte_arr = BytesIO()
|
@@ -92,13 +78,6 @@ def generate_api():
|
|
92 |
print(f"Error in generate_api: {str(e)}") # Log the error
|
93 |
return jsonify({"error": str(e)}), 500
|
94 |
|
95 |
-
# Add a new endpoint to reject the image generation
|
96 |
-
@app.route('/reject', methods=['POST'])
|
97 |
-
def reject_generation():
|
98 |
-
global generation_rejected
|
99 |
-
generation_rejected.set() # Set the flag to indicate the request should be rejected
|
100 |
-
return jsonify({"message": "Image generation has been marked for rejection."})
|
101 |
-
|
102 |
# Add this block to make sure your app runs when called
|
103 |
if __name__ == "__main__":
|
104 |
app.run(host='0.0.0.0', port=7860) # Run directly if needed for testing
|
|
|
4 |
from huggingface_hub import InferenceClient
|
5 |
from io import BytesIO
|
6 |
from PIL import Image
|
|
|
7 |
|
8 |
# Initialize the Flask app
|
9 |
app = Flask(__name__)
|
|
|
13 |
HF_TOKEN = os.environ.get("HF_TOKEN") # Ensure to set your Hugging Face token in the environment
|
14 |
client = InferenceClient(token=HF_TOKEN)
|
15 |
|
|
|
|
|
|
|
16 |
@app.route('/')
|
17 |
def home():
|
18 |
return "Welcome to the Image Background Remover!"
|
19 |
|
20 |
+
|
21 |
# Function to generate an image from a text prompt
|
22 |
def generate_image(prompt, negative_prompt=None, height=512, width=512, model="stabilityai/stable-diffusion-2-1", num_inference_steps=50, guidance_scale=7.5, seed=None):
|
23 |
try:
|
|
|
|
|
|
|
|
|
24 |
# Generate the image using Hugging Face's inference API with additional parameters
|
25 |
image = client.text_to_image(
|
26 |
prompt=prompt,
|
|
|
40 |
# Flask route for the API endpoint to generate an image
|
41 |
@app.route('/generate_image', methods=['POST'])
|
42 |
def generate_api():
|
|
|
|
|
|
|
43 |
data = request.get_json()
|
44 |
|
45 |
# Extract required fields from the request
|
|
|
59 |
# Call the generate_image function with the provided parameters
|
60 |
image = generate_image(prompt, negative_prompt, height, width, model_name, num_inference_steps, guidance_scale, seed)
|
61 |
|
|
|
|
|
|
|
|
|
62 |
if image:
|
63 |
# Save the image to a BytesIO object
|
64 |
img_byte_arr = BytesIO()
|
|
|
78 |
print(f"Error in generate_api: {str(e)}") # Log the error
|
79 |
return jsonify({"error": str(e)}), 500
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
# Add this block to make sure your app runs when called
|
82 |
if __name__ == "__main__":
|
83 |
app.run(host='0.0.0.0', port=7860) # Run directly if needed for testing
|