Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,23 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from random import randint
|
3 |
-
from all_models import models
|
4 |
-
from externalmod import gr_Interface_load
|
5 |
import asyncio
|
6 |
import os
|
7 |
from threading import RLock
|
8 |
from gradio_client import Client
|
|
|
|
|
9 |
|
|
|
|
|
|
|
|
|
10 |
client = Client("Geek7/mdztxi2")
|
11 |
|
12 |
lock = RLock()
|
13 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
14 |
|
|
|
15 |
def load_fn(models):
|
16 |
global models_load
|
17 |
models_load = {}
|
@@ -22,17 +28,13 @@ def load_fn(models):
|
|
22 |
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
|
23 |
except Exception as error:
|
24 |
print(error)
|
25 |
-
m = gr.Interface(lambda: None, ['text'], ['image'])
|
26 |
models_load.update({model: m})
|
27 |
|
28 |
load_fn(models)
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
default_models = models[:num_models]
|
33 |
-
inference_timeout = 600
|
34 |
-
|
35 |
-
async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
|
36 |
kwargs = {"seed": seed}
|
37 |
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=prompt, **kwargs, token=HF_TOKEN))
|
38 |
await asyncio.sleep(0)
|
@@ -51,19 +53,26 @@ async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
|
|
51 |
return png_path
|
52 |
return None
|
53 |
|
54 |
-
#
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
#
|
63 |
-
if
|
64 |
-
return
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
iface.launch(show_api=True, share=True)
|
|
|
1 |
+
from flask import Flask, request, jsonify, send_file
|
2 |
+
from flask_cors import CORS # For enabling CORS
|
3 |
import gradio as gr
|
|
|
|
|
|
|
4 |
import asyncio
|
5 |
import os
|
6 |
from threading import RLock
|
7 |
from gradio_client import Client
|
8 |
+
from all_models import models # Your model import
|
9 |
+
from externalmod import gr_Interface_load # Your custom model loader
|
10 |
|
11 |
+
app = Flask(__name__)
|
12 |
+
CORS(app) # Enable CORS for all routes
|
13 |
+
|
14 |
+
# Gradio Client Initialization
|
15 |
client = Client("Geek7/mdztxi2")
|
16 |
|
17 |
lock = RLock()
|
18 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
19 |
|
20 |
+
# Model Loading Function
|
21 |
def load_fn(models):
|
22 |
global models_load
|
23 |
models_load = {}
|
|
|
28 |
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
|
29 |
except Exception as error:
|
30 |
print(error)
|
31 |
+
m = gr.Interface(lambda: None, ['text'], ['image']) # Fallback
|
32 |
models_load.update({model: m})
|
33 |
|
34 |
load_fn(models)
|
35 |
|
36 |
+
# Async inference function to call Gradio model prediction
|
37 |
+
async def infer(model_str, prompt, seed=1, timeout=600):
|
|
|
|
|
|
|
|
|
38 |
kwargs = {"seed": seed}
|
39 |
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=prompt, **kwargs, token=HF_TOKEN))
|
40 |
await asyncio.sleep(0)
|
|
|
53 |
return png_path
|
54 |
return None
|
55 |
|
56 |
+
# API endpoint for generating an image and sending it as a file
|
57 |
+
@app.route('/generate-image', methods=['POST'])
|
58 |
+
def generate_image():
|
59 |
+
data = request.get_json()
|
60 |
+
model_str = data.get('model_str')
|
61 |
+
prompt = data.get('prompt')
|
62 |
+
seed = data.get('seed', 1)
|
63 |
+
|
64 |
+
# Validate input
|
65 |
+
if not model_str or not prompt:
|
66 |
+
return jsonify({"error": "Model string and prompt are required."}), 400
|
67 |
+
|
68 |
+
# Generate image using the async inference function
|
69 |
+
result_path = asyncio.run(infer(model_str, prompt, seed))
|
70 |
+
|
71 |
+
if result_path:
|
72 |
+
# Return the image file using send_file
|
73 |
+
return send_file(result_path, mimetype='image/png')
|
74 |
+
else:
|
75 |
+
return jsonify({"error": "Image generation failed."}), 500
|
76 |
|
77 |
+
if __name__ == '__main__':
|
78 |
+
app.run(debug=True)
|
|