Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,31 @@
|
|
1 |
-
from flask import Flask, request
|
2 |
-
from flask_cors import CORS
|
3 |
import os
|
4 |
from huggingface_hub import InferenceClient
|
5 |
-
from io import BytesIO
|
6 |
from PIL import Image
|
7 |
-
import gradio as gr # Import Gradio
|
8 |
-
|
9 |
-
# Initialize the Flask app
|
10 |
-
app = Flask(__name__)
|
11 |
-
CORS(app) # Enable CORS for all routes
|
12 |
|
13 |
# Initialize the InferenceClient with your Hugging Face token
|
14 |
HF_TOKEN = os.environ.get("HF_TOKEN") # Ensure to set your Hugging Face token in the environment
|
15 |
-
client = InferenceClient(token=HF_TOKEN)
|
16 |
|
17 |
# Function to generate an image from a text prompt
|
18 |
-
def generate_image(prompt,
|
19 |
try:
|
20 |
# Generate the image using Hugging Face's inference API
|
21 |
-
|
22 |
-
|
23 |
-
# Convert the result to a PIL Image
|
24 |
-
if isinstance(result_image, bytes):
|
25 |
-
# If the result is in bytes format
|
26 |
-
image = Image.open(BytesIO(result_image))
|
27 |
-
else:
|
28 |
-
# If the result is in another format, handle accordingly
|
29 |
-
raise ValueError("Received image in an unexpected format")
|
30 |
-
|
31 |
-
return image
|
32 |
except Exception as e:
|
33 |
print(f"Error generating image: {str(e)}")
|
34 |
return None
|
35 |
|
36 |
-
# Gradio interface function
|
37 |
-
def gradio_interface(prompt, seed, model_name):
|
38 |
-
image = generate_image(prompt, seed, model_name)
|
39 |
-
|
40 |
-
if image:
|
41 |
-
img_byte_arr = BytesIO()
|
42 |
-
image.save(img_byte_arr, format='PNG') # Convert the image to PNG
|
43 |
-
img_byte_arr.seek(0) # Move to the start of the byte stream
|
44 |
-
return img_byte_arr # Return the image as bytes
|
45 |
-
else:
|
46 |
-
return "Failed to generate image"
|
47 |
-
|
48 |
# Set up the Gradio interface
|
49 |
gr.Interface(
|
50 |
-
fn=
|
51 |
inputs=[
|
52 |
gr.Textbox(label="Prompt", placeholder="Enter a text prompt", lines=2),
|
53 |
-
gr.
|
54 |
-
gr.Textbox(label="Model Name",
|
55 |
],
|
56 |
outputs="image",
|
57 |
title="Image Generation with Hugging Face",
|
58 |
-
description="Enter a prompt,
|
59 |
-
).launch(
|
60 |
-
|
61 |
-
# Add this block to make sure your app runs when called
|
62 |
-
if __name__ == "__main__":
|
63 |
-
app.run(host='0.0.0.0', port=7860) # Run directly if needed for testing
|
|
|
|
|
|
|
1 |
import os
|
2 |
from huggingface_hub import InferenceClient
|
|
|
3 |
from PIL import Image
|
4 |
+
import gradio as gr # Import Gradio for the UI
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Initialize the InferenceClient with your Hugging Face token
|
7 |
HF_TOKEN = os.environ.get("HF_TOKEN") # Ensure to set your Hugging Face token in the environment
|
8 |
+
client = InferenceClient(token=HF_TOKEN) # Initialize the client
|
9 |
|
10 |
# Function to generate an image from a text prompt
|
11 |
+
def generate_image(prompt, negative_prompt=None, model=None):
|
12 |
try:
|
13 |
# Generate the image using Hugging Face's inference API
|
14 |
+
image = client.text_to_image(prompt=prompt, negative_prompt=negative_prompt, model=model)
|
15 |
+
return image # Return the generated image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
except Exception as e:
|
17 |
print(f"Error generating image: {str(e)}")
|
18 |
return None
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
# Set up the Gradio interface
|
21 |
gr.Interface(
|
22 |
+
fn=generate_image,
|
23 |
inputs=[
|
24 |
gr.Textbox(label="Prompt", placeholder="Enter a text prompt", lines=2),
|
25 |
+
gr.Textbox(label="Negative Prompt (Optional)", placeholder="Enter negative prompt", lines=2),
|
26 |
+
gr.Textbox(label="Model Name", placeholder="Enter model name", value="stabilityai/stable-diffusion-2-1"),
|
27 |
],
|
28 |
outputs="image",
|
29 |
title="Image Generation with Hugging Face",
|
30 |
+
description="Enter a prompt, optional negative prompt, and model name to generate an image.",
|
31 |
+
).launch() # Launch the Gradio interface
|
|
|
|
|
|
|
|