Update myapp.py
Browse files
myapp.py
CHANGED
@@ -1,21 +1,19 @@
|
|
1 |
from flask import Flask, request, jsonify, send_file
|
2 |
-
|
3 |
-
import
|
4 |
from all_models import models
|
5 |
from externalmod import gr_Interface_load
|
6 |
import asyncio
|
|
|
7 |
from threading import RLock
|
|
|
8 |
|
9 |
-
# Initialize Flask app and enable CORS
|
10 |
app = Flask(__name__)
|
11 |
-
CORS(app)
|
12 |
|
13 |
lock = RLock()
|
14 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
15 |
|
16 |
-
# Load models
|
17 |
-
models_load = {}
|
18 |
-
|
19 |
def load_fn(models):
|
20 |
global models_load
|
21 |
models_load = {}
|
@@ -24,50 +22,56 @@ def load_fn(models):
|
|
24 |
if model not in models_load.keys():
|
25 |
try:
|
26 |
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
|
27 |
-
models_load[model] = m
|
28 |
except Exception as error:
|
29 |
-
print(
|
30 |
-
|
|
|
31 |
|
32 |
load_fn(models)
|
33 |
|
|
|
|
|
|
|
34 |
inference_timeout = 600
|
35 |
|
|
|
36 |
async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
|
37 |
kwargs = {"seed": seed}
|
|
|
|
|
38 |
try:
|
39 |
-
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=prompt, **kwargs, token=HF_TOKEN))
|
40 |
-
await asyncio.sleep(0)
|
41 |
-
|
42 |
result = await asyncio.wait_for(task, timeout=timeout)
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
57 |
seed = data.get('seed', 1)
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
if model_str not in models_load or models_load[model_str] is None:
|
62 |
-
print(f"Model not found in models_load: {model_str}. Available models: {models_load.keys()}")
|
63 |
-
return jsonify({"error": "Model not found or not loaded"}), 404
|
64 |
-
|
65 |
-
image_path = asyncio.run(infer(model_str, prompt, seed, inference_timeout))
|
66 |
-
if image_path is not None:
|
67 |
-
return send_file(image_path, mimetype='image/png')
|
68 |
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
73 |
-
|
|
|
|
1 |
from flask import Flask, request, jsonify, send_file
|
2 |
+
import gradio as gr
|
3 |
+
from random import randint
|
4 |
from all_models import models
|
5 |
from externalmod import gr_Interface_load
|
6 |
import asyncio
|
7 |
+
import os
|
8 |
from threading import RLock
|
9 |
+
from PIL import Image
|
10 |
|
|
|
11 |
app = Flask(__name__)
|
|
|
12 |
|
13 |
lock = RLock()
|
14 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
15 |
|
16 |
+
# Load models
|
|
|
|
|
17 |
def load_fn(models):
|
18 |
global models_load
|
19 |
models_load = {}
|
|
|
22 |
if model not in models_load.keys():
|
23 |
try:
|
24 |
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
|
|
|
25 |
except Exception as error:
|
26 |
+
print(error)
|
27 |
+
m = gr.Interface(lambda: None, ['text'], ['image'])
|
28 |
+
models_load.update({model: m})
|
29 |
|
30 |
load_fn(models)
|
31 |
|
32 |
+
num_models = 6
|
33 |
+
MAX_SEED = 3999999999
|
34 |
+
default_models = models[:num_models]
|
35 |
inference_timeout = 600
|
36 |
|
37 |
+
# Gradio inference function
|
38 |
async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
|
39 |
kwargs = {"seed": seed}
|
40 |
+
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=prompt, **kwargs, token=HF_TOKEN))
|
41 |
+
await asyncio.sleep(0)
|
42 |
try:
|
|
|
|
|
|
|
43 |
result = await asyncio.wait_for(task, timeout=timeout)
|
44 |
+
except (Exception, asyncio.TimeoutError) as e:
|
45 |
+
print(e)
|
46 |
+
print(f"Task timed out: {model_str}")
|
47 |
+
if not task.done():
|
48 |
+
task.cancel()
|
49 |
+
result = None
|
50 |
+
if task.done() and result is not None:
|
51 |
+
with lock:
|
52 |
+
png_path = "generated_image.png"
|
53 |
+
result.save(png_path) # Save the result as an image
|
54 |
+
return png_path
|
55 |
+
return None
|
56 |
|
57 |
+
# API function to perform inference
|
58 |
+
@app.route('/generate-image', methods=['POST'])
|
59 |
+
def generate_image():
|
60 |
+
data = request.get_json()
|
61 |
+
model_str = data['model_str']
|
62 |
+
prompt = data['prompt']
|
63 |
seed = data.get('seed', 1)
|
64 |
|
65 |
+
# Run Gradio inference
|
66 |
+
result_path = asyncio.run(infer(model_str, prompt, seed))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
if result_path:
|
69 |
+
# Send back the generated image file
|
70 |
+
return send_file(result_path, mimetype='image/png')
|
71 |
+
else:
|
72 |
+
return jsonify({"error": "Failed to generate image."}), 500
|
73 |
+
|
74 |
|
75 |
+
# Add this block to make sure your app runs when called
|
76 |
+
if __name__ == "__main__":
|
77 |
+
app.run(host='0.0.0.0', port=7860) # Run directly
|