import gradio as gr from random import randint from all_models import models from externalmod import gr_Interface_load import asyncio import os from threading import RLock lock = RLock() HF_TOKEN = os.environ.get("HF_TOKEN") def load_fn(models): global models_load models_load = {} for model in models: if model not in models_load.keys(): try: m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN) except Exception as error: print(error) m = gr.Interface(lambda: None, ['text'], ['image']) models_load.update({model: m}) load_fn(models) num_models = 6 MAX_SEED = 3999999999 default_models = models[:num_models] inference_timeout = 600 async def infer(model_str, prompt, seed=1, timeout=inference_timeout): kwargs = {"seed": seed} task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=prompt, **kwargs, token=HF_TOKEN)) await asyncio.sleep(0) try: result = await asyncio.wait_for(task, timeout=timeout) except (Exception, asyncio.TimeoutError) as e: print(e) print(f"Task timed out: {model_str}") if not task.done(): task.cancel() result = None if task.done() and result is not None: with lock: png_path = "image.png" result.save(png_path) return png_path return None # Expose Gradio API def generate_api(model_str, prompt, seed=1): result = asyncio.run(infer(model_str, prompt, seed,api_name="/predict" )) if result: return result # Path to generated image return None # Launch Gradio API without frontend iface = gr.Interface(fn=generate_api, inputs=["text", "text", "number"], outputs="file") iface.launch(show_api=True, share=True)