Update myapp.py
Browse files
myapp.py
CHANGED
@@ -1,56 +1,56 @@
|
|
1 |
-
from flask import Flask, request, send_file
|
2 |
from flask_cors import CORS
|
3 |
import torch
|
4 |
from diffusers import DiffusionPipeline
|
5 |
-
import io
|
6 |
import numpy as np
|
7 |
import random
|
|
|
|
|
8 |
|
9 |
# Initialize the Flask app
|
10 |
myapp = Flask(__name__)
|
11 |
CORS(myapp) # Enable CORS if needed
|
12 |
|
13 |
# Load the model
|
14 |
-
device = "
|
|
|
15 |
|
16 |
-
|
17 |
-
pipe = DiffusionPipeline.from_pretrained(
|
18 |
|
19 |
-
# Define max values for seed and image size
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1344
|
22 |
|
23 |
-
@
|
24 |
def home():
|
25 |
-
return "Welcome to the
|
26 |
|
27 |
-
@
|
28 |
def generate_image():
|
29 |
data = request.json
|
30 |
|
31 |
# Get inputs from request JSON
|
32 |
-
prompt = data.get('prompt', '
|
33 |
negative_prompt = data.get('negative_prompt', None)
|
34 |
seed = data.get('seed', 0)
|
35 |
randomize_seed = data.get('randomize_seed', True)
|
36 |
width = data.get('width', 1024)
|
37 |
height = data.get('height', 1024)
|
38 |
-
guidance_scale = data.get('guidance_scale',
|
39 |
-
num_inference_steps = data.get('num_inference_steps',
|
40 |
-
|
41 |
# Randomize seed if requested
|
42 |
if randomize_seed:
|
43 |
seed = random.randint(0, MAX_SEED)
|
44 |
-
|
45 |
# Generate the image
|
46 |
generator = torch.Generator().manual_seed(seed)
|
47 |
image = pipe(
|
48 |
prompt=prompt,
|
49 |
-
negative_prompt=negative_prompt,
|
50 |
-
width=width,
|
51 |
-
height=height,
|
52 |
guidance_scale=guidance_scale,
|
53 |
num_inference_steps=num_inference_steps,
|
|
|
|
|
54 |
generator=generator
|
55 |
).images[0]
|
56 |
|
|
|
1 |
+
from flask import Flask, jsonify, request, send_file
|
2 |
from flask_cors import CORS
|
3 |
import torch
|
4 |
from diffusers import DiffusionPipeline
|
|
|
5 |
import numpy as np
|
6 |
import random
|
7 |
+
import io
|
8 |
+
from PIL import Image
|
9 |
|
10 |
# Initialize the Flask app
|
11 |
myapp = Flask(__name__)
|
12 |
CORS(myapp) # Enable CORS if needed
|
13 |
|
14 |
# Load the model
|
15 |
+
device = "cpu"
|
16 |
+
dtype = torch.float16
|
17 |
|
18 |
+
repo = "prompthero/openjourney-v4"
|
19 |
+
pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=dtype).to(device)
|
20 |
|
|
|
21 |
MAX_SEED = np.iinfo(np.int32).max
|
22 |
MAX_IMAGE_SIZE = 1344
|
23 |
|
24 |
+
@myapp.route('/') # Use 'myapp' instead of 'app'
|
25 |
def home():
|
26 |
+
return "Welcome to the Diffusion Image Generation API!" # Basic home response
|
27 |
|
28 |
+
@myapp.route('/generate_image', methods=['POST'])
|
29 |
def generate_image():
|
30 |
data = request.json
|
31 |
|
32 |
# Get inputs from request JSON
|
33 |
+
prompt = data.get('prompt', '')
|
34 |
negative_prompt = data.get('negative_prompt', None)
|
35 |
seed = data.get('seed', 0)
|
36 |
randomize_seed = data.get('randomize_seed', True)
|
37 |
width = data.get('width', 1024)
|
38 |
height = data.get('height', 1024)
|
39 |
+
guidance_scale = data.get('guidance_scale', 5.0)
|
40 |
+
num_inference_steps = data.get('num_inference_steps', 28)
|
41 |
+
|
42 |
# Randomize seed if requested
|
43 |
if randomize_seed:
|
44 |
seed = random.randint(0, MAX_SEED)
|
45 |
+
|
46 |
# Generate the image
|
47 |
generator = torch.Generator().manual_seed(seed)
|
48 |
image = pipe(
|
49 |
prompt=prompt,
|
|
|
|
|
|
|
50 |
guidance_scale=guidance_scale,
|
51 |
num_inference_steps=num_inference_steps,
|
52 |
+
width=width,
|
53 |
+
height=height,
|
54 |
generator=generator
|
55 |
).images[0]
|
56 |
|