Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,65 +1,115 @@
|
|
1 |
-
import cv2
|
2 |
-
import gradio as gr
|
3 |
import torch
|
4 |
-
|
5 |
import numpy as np
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
15 |
-
pipe = pipe.to("cuda")
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
21 |
|
22 |
-
#
|
23 |
-
def
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
prompt = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
#
|
48 |
-
def
|
49 |
-
|
50 |
-
|
|
|
51 |
|
52 |
-
interface
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
import transformers
|
3 |
import numpy as np
|
4 |
+
import gradio as gr
|
5 |
+
import openai
|
6 |
+
from sklearn.preprocessing import MinMaxScaler
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
from datetime import datetime, timedelta
|
9 |
|
10 |
+
# Load Hugging Face model for financial insights generation
|
11 |
+
generator = transformers.pipeline("text-generation", model="gpt2")
|
|
|
|
|
12 |
|
13 |
+
# Sample function for fetching stock market data (you can use libraries like yfinance or Alpha Vantage)
|
14 |
+
def get_stock_data(symbol, start_date, end_date):
|
15 |
+
# This is just a placeholder. In production, use an API to get actual stock data
|
16 |
+
dates = np.array([start_date + timedelta(days=i) for i in range((end_date - start_date).days)])
|
17 |
+
prices = np.sin(np.linspace(0, 20, len(dates))) * 100 + 1000 # Placeholder for stock prices
|
18 |
+
return dates, prices
|
19 |
|
20 |
+
# Preprocessing stock data for prediction
|
21 |
+
def preprocess_data(prices):
|
22 |
+
scaler = MinMaxScaler(feature_range=(0, 1))
|
23 |
+
prices_scaled = scaler.fit_transform(prices.reshape(-1, 1))
|
24 |
+
return scaler, prices_scaled
|
|
|
25 |
|
26 |
+
# LSTM-based deep learning model for stock price prediction
|
27 |
+
class StockPredictor(torch.nn.Module):
|
28 |
+
def __init__(self, input_size=1, hidden_size=50, num_layers=1):
|
29 |
+
super(StockPredictor, self).__init__()
|
30 |
+
self.lstm = torch.nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
|
31 |
+
self.fc = torch.nn.Linear(hidden_size, 1)
|
32 |
|
33 |
+
def forward(self, x):
|
34 |
+
out, _ = self.lstm(x)
|
35 |
+
out = self.fc(out[:, -1, :])
|
36 |
+
return out
|
37 |
|
38 |
+
# Function to train the model on historical stock data
|
39 |
+
def train_model(prices_scaled):
|
40 |
+
model = StockPredictor()
|
41 |
+
criterion = torch.nn.MSELoss()
|
42 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
|
43 |
+
|
44 |
+
# Prepare data for training
|
45 |
+
X_train, y_train = [], []
|
46 |
+
for i in range(len(prices_scaled) - 1):
|
47 |
+
X_train.append(prices_scaled[i:i+10]) # Using the last 10 days to predict next day's price
|
48 |
+
y_train.append(prices_scaled[i+10])
|
49 |
|
50 |
+
X_train = torch.tensor(np.array(X_train), dtype=torch.float32)
|
51 |
+
y_train = torch.tensor(np.array(y_train), dtype=torch.float32)
|
52 |
+
|
53 |
+
# Train the model
|
54 |
+
for epoch in range(100):
|
55 |
+
model.train()
|
56 |
+
optimizer.zero_grad()
|
57 |
+
outputs = model(X_train)
|
58 |
+
loss = criterion(outputs, y_train)
|
59 |
+
loss.backward()
|
60 |
+
optimizer.step()
|
61 |
+
|
62 |
+
return model
|
63 |
+
|
64 |
+
# Predict future stock prices
|
65 |
+
def predict_stock(model, scaler, input_data):
|
66 |
+
model.eval()
|
67 |
+
with torch.no_grad():
|
68 |
+
predictions = model(torch.tensor(input_data, dtype=torch.float32))
|
69 |
+
return scaler.inverse_transform(predictions.detach().numpy())
|
70 |
|
71 |
+
# Generate financial insights using Hugging Face's GPT model
|
72 |
+
def generate_financial_insight(stock_symbol):
|
73 |
+
prompt = f"Generate a detailed financial report for the stock symbol {stock_symbol} based on recent market trends."
|
74 |
+
response = generator(prompt, max_length=150, num_return_sequences=1)
|
75 |
+
return response[0]['generated_text']
|
76 |
|
77 |
+
# Gradio interface function
|
78 |
+
def financial_advisor(symbol):
|
79 |
+
start_date = datetime.now() - timedelta(days=365) # Last year data
|
80 |
+
end_date = datetime.now()
|
81 |
+
|
82 |
+
# Get stock data (for simplicity, using dummy data here)
|
83 |
+
dates, prices = get_stock_data(symbol, start_date, end_date)
|
84 |
+
|
85 |
+
# Preprocess data for prediction
|
86 |
+
scaler, prices_scaled = preprocess_data(prices)
|
87 |
+
|
88 |
+
# Train the model on historical data
|
89 |
+
model = train_model(prices_scaled)
|
90 |
+
|
91 |
+
# Predict future prices (for simplicity, predicting the next 30 days)
|
92 |
+
future_data = prices_scaled[-10:].reshape(1, 10, 1)
|
93 |
+
predictions = predict_stock(model, scaler, future_data)
|
94 |
+
|
95 |
+
# Generate financial insights
|
96 |
+
insight = generate_financial_insight(symbol)
|
97 |
+
|
98 |
+
# Plot predicted prices
|
99 |
+
plt.plot(dates, prices, label="Historical Prices")
|
100 |
+
predicted_dates = [dates[-1] + timedelta(days=i) for i in range(1, 31)]
|
101 |
+
plt.plot(predicted_dates, predictions, label="Predicted Prices", linestyle="--")
|
102 |
+
plt.xlabel('Date')
|
103 |
+
plt.ylabel('Price')
|
104 |
+
plt.legend()
|
105 |
+
plt.xticks(rotation=45)
|
106 |
+
|
107 |
+
# Return results to display in Gradio
|
108 |
+
return plt.gcf(), f"Financial Insight for {symbol}: {insight}"
|
109 |
|
110 |
+
# Launch Gradio interface
|
111 |
+
gr.Interface(
|
112 |
+
fn=financial_advisor,
|
113 |
+
inputs=[gr.Textbox(label="Stock Symbol", placeholder="Enter Stock Symbol (e.g., AAPL)")],
|
114 |
+
outputs=[gr.Plot(), gr.Textbox()]
|
115 |
+
).launch()
|