GeminiAi commited on
Commit
ce80f11
·
verified ·
1 Parent(s): 6e7bb0c

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -0
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from diffusers import StableDiffusionPipeline
4
+ from moviepy.editor import ImageSequenceClip
5
+ import os
6
+ import numpy as np
7
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
8
+
9
+ # Initialize text-to-image pipeline
10
+ model_id = "CompVis/stable-diffusion-v1-4"
11
+ pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
12
+ pipe = pipe.to("cuda")
13
+
14
+ # Load a text summarization model for better prompts (optional)
15
+ summarizer_model = "facebook/bart-large-cnn"
16
+ tokenizer = AutoTokenizer.from_pretrained(summarizer_model)
17
+ summarizer = AutoModelForSeq2SeqLM.from_pretrained(summarizer_model)
18
+
19
+ # Function to create video from text
20
+ def text_to_video(input_text, num_frames=10, fps=2):
21
+ # Summarize input text for better image prompts
22
+ inputs = tokenizer(input_text, return_tensors="pt", truncation=True)
23
+ summary_ids = summarizer.generate(inputs["input_ids"], max_length=30, min_length=5, length_penalty=2.0)
24
+ prompt = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
25
+
26
+ # Generate images
27
+ frames = []
28
+ for i in range(num_frames):
29
+ prompt_with_frame = f"{prompt}, frame {i+1}"
30
+ image = pipe(prompt_with_frame).images[0]
31
+ frames.append(np.array(image))
32
+
33
+ # Save images as video
34
+ video_path = "output.mp4"
35
+ clip = ImageSequenceClip(frames, fps=fps)
36
+ clip.write_videofile(video_path, codec="libx264")
37
+ return video_path
38
+
39
+ # Define Gradio Interface
40
+ def generate_video(text, frames, fps):
41
+ video_file = text_to_video(text, num_frames=frames, fps=fps)
42
+ return video_file
43
+
44
+ interface = gr.Interface(
45
+ fn=generate_video,
46
+ inputs=[
47
+ gr.Textbox(label="Enter your text prompt"),
48
+ gr.Slider(5, 30, value=10, step=1, label="Number of Frames"),
49
+ gr.Slider(1, 10, value=2, step=1, label="Frames per Second (FPS)"),
50
+ ],
51
+ outputs=gr.Video(label="Generated Video"),
52
+ title="Text-to-Video Generator",
53
+ description="Enter a text prompt to generate a short video."
54
+ )
55
+
56
+ if __name__ == "__main__":
57
+ interface.launch()