Spaces:
Sleeping
Sleeping
Chandranshu Jain
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -49,28 +49,6 @@ def response_generate(text,query):
|
|
49 |
qa = RetrievalQA.from_chain_type(llm = GoogleGenerativeAI(model="gemini-pro", google_api_key=GOOGLE_API_KEY ), chain_type='stuff', retriever=retriever)
|
50 |
return qa.run(query_text)
|
51 |
|
52 |
-
def get_conversational_chain():
|
53 |
-
prompt_template = """
|
54 |
-
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
|
55 |
-
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
|
56 |
-
Context:\n {context}?\n
|
57 |
-
Question: \n{question}\n
|
58 |
-
|
59 |
-
Answer:
|
60 |
-
"""
|
61 |
-
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3, google_api_key=GOOGLE_API_KEY)
|
62 |
-
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
63 |
-
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
64 |
-
return chain
|
65 |
-
|
66 |
-
def user_call(query):
|
67 |
-
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
68 |
-
db3 = Chroma(persist_directory="./chroma_db", embedding_function=embeddings)
|
69 |
-
docs = db3.similarity_search(query)
|
70 |
-
chain = get_conversational_chain()
|
71 |
-
response = chain({"input_documents": docs, "question": query}, return_only_outputs=True)
|
72 |
-
#st.write("Reply: ", response["output_text"])
|
73 |
-
|
74 |
def main():
|
75 |
st.header("Chat with your pdf💁")
|
76 |
|
|
|
49 |
qa = RetrievalQA.from_chain_type(llm = GoogleGenerativeAI(model="gemini-pro", google_api_key=GOOGLE_API_KEY ), chain_type='stuff', retriever=retriever)
|
50 |
return qa.run(query_text)
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
def main():
|
53 |
st.header("Chat with your pdf💁")
|
54 |
|