Spaces:
Sleeping
Sleeping
Chandranshu Jain
commited on
Commit
•
85b3a3f
1
Parent(s):
3bbb573
Update app3.py
Browse files
app3.py
CHANGED
@@ -7,6 +7,7 @@ from langchain_community.vectorstores import Chroma
|
|
7 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
from langchain.chains.question_answering import load_qa_chain
|
9 |
from langchain.prompts import PromptTemplate
|
|
|
10 |
|
11 |
st.set_page_config(page_title="Document Genie", layout="wide")
|
12 |
|
@@ -56,7 +57,8 @@ def get_pdf(pdf_docs,query):
|
|
56 |
chunks=text_splitter.split_text(text)
|
57 |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
58 |
vector = Chroma.from_documents(chunk, embeddings)
|
59 |
-
docs = vector.similarity_search(query)
|
|
|
60 |
chain = get_conversational_chain()
|
61 |
response = chain({"input_documents": docs, "question": query}, return_only_outputs=True)
|
62 |
return response
|
|
|
7 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
from langchain.chains.question_answering import load_qa_chain
|
9 |
from langchain.prompts import PromptTemplate
|
10 |
+
from langchain.chains import RetrievalQA
|
11 |
|
12 |
st.set_page_config(page_title="Document Genie", layout="wide")
|
13 |
|
|
|
57 |
chunks=text_splitter.split_text(text)
|
58 |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
59 |
vector = Chroma.from_documents(chunk, embeddings)
|
60 |
+
#docs = vector.similarity_search(query)
|
61 |
+
docs = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3})
|
62 |
chain = get_conversational_chain()
|
63 |
response = chain({"input_documents": docs, "question": query}, return_only_outputs=True)
|
64 |
return response
|