Chandranshu Jain commited on
Commit
a8da5c6
1 Parent(s): a55f136

Create app3.py

Browse files
Files changed (1) hide show
  1. app3.py +94 -0
app3.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PyPDF2 import PdfReader
3
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
4
+ from langchain_google_genai import GoogleGenerativeAIEmbeddings
5
+ import google.generativeai as genai
6
+ from langchain.vectorstores import FAISS
7
+ from langchain_google_genai import ChatGoogleGenerativeAI
8
+ from langchain.chains.question_answering import load_qa_chain
9
+ from langchain.prompts import PromptTemplate
10
+ import os
11
+
12
+ st.set_page_config(page_title="Document Genie", layout="wide")
13
+
14
+ st.markdown("""
15
+ ## Document Genie: Get instant insights from your Documents
16
+
17
+ This chatbot is built using the Retrieval-Augmented Generation (RAG) framework, leveraging Google's Generative AI model Gemini-PRO. It processes uploaded PDF documents by breaking them down into manageable chunks, creates a searchable vector store, and generates accurate answers to user queries. This advanced approach ensures high-quality, contextually relevant responses for an efficient and effective user experience.
18
+
19
+ ### How It Works
20
+
21
+ Follow these simple steps to interact with the chatbot:
22
+
23
+ 1. **Enter Your API Key**: You'll need a Google API key for the chatbot to access Google's Generative AI models. Obtain your API key https://makersuite.google.com/app/apikey.
24
+
25
+ 2. **Upload Your Documents**: The system accepts multiple PDF files at once, analyzing the content to provide comprehensive insights.
26
+
27
+ 3. **Ask a Question**: After processing the documents, ask any question related to the content of your uploaded documents for a precise answer.
28
+ """)
29
+
30
+
31
+
32
+ # This is the first API key input; no need to repeat it in the main function.
33
+ api_key = st.text_input("Enter your Google API Key:", type="password", key="api_key_input")
34
+
35
+ def get_pdf_text(pdf_docs):
36
+ text = ""
37
+ for pdf in pdf_docs:
38
+ pdf_reader = PdfReader(pdf)
39
+ for page in pdf_reader.pages:
40
+ text += page.extract_text()
41
+ return text
42
+
43
+ def get_text_chunks(text):
44
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
45
+ chunks = text_splitter.split_text(text)
46
+ return chunks
47
+
48
+ def get_vector_store(text_chunks, api_key):
49
+ embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
50
+ vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
51
+ vector_store.save_local("faiss_index")
52
+
53
+ def get_conversational_chain():
54
+ prompt_template = """
55
+ Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
56
+ provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
57
+ Context:\n {context}?\n
58
+ Question: \n{question}\n
59
+
60
+ Answer:
61
+ """
62
+ model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3, google_api_key=api_key)
63
+ prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
64
+ chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
65
+ return chain
66
+
67
+ def user_input(user_question, api_key):
68
+ embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
69
+ new_db = FAISS.load_local("faiss_index", embeddings)
70
+ docs = new_db.similarity_search(user_question)
71
+ chain = get_conversational_chain()
72
+ response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
73
+ st.write("Reply: ", response["output_text"])
74
+
75
+ def main():
76
+ st.header("AI clone chatbot💁")
77
+
78
+ user_question = st.text_input("Ask a Question from the PDF Files", key="user_question")
79
+
80
+ if user_question and api_key: # Ensure API key and user question are provided
81
+ user_input(user_question, api_key)
82
+
83
+ with st.sidebar:
84
+ st.title("Menu:")
85
+ pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True, key="pdf_uploader")
86
+ if st.button("Submit & Process", key="process_button") and api_key: # Check if API key is provided before processing
87
+ with st.spinner("Processing..."):
88
+ raw_text = get_pdf_text(pdf_docs)
89
+ text_chunks = get_text_chunks(raw_text)
90
+ get_vector_store(text_chunks, api_key)
91
+ st.success("Done")
92
+
93
+ if __name__ == "__main__":
94
+ main()