Chandranshu Jain commited on
Commit
f942880
1 Parent(s): 0d5b48e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -12
app.py CHANGED
@@ -33,20 +33,20 @@ def get_pdf(pdf_docs):
33
  return text
34
 
35
  def text_splitter(text):
36
- text_splitter = RecursiveCharacterTextSplitter(
37
  # Set a really small chunk size, just to show.
38
  chunk_size=500,
39
  chunk_overlap=20,
40
  separators=["\n\n","\n"," ",".",","])
41
- chunks=text_splitter.split_text(text)
42
- return chunks
43
 
44
  GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
45
 
46
  def embedding(chunk):
47
- embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
48
- vector = Chroma.from_documents(chunk)
49
- db = Chroma.from_documents(vector, embeddings, persist_directory="./chroma_db")
50
 
51
  def get_conversational_chain():
52
  prompt_template = """
@@ -63,12 +63,13 @@ def get_conversational_chain():
63
  return chain
64
 
65
  def user_call(query):
66
- embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
67
- db3 = Chroma(persist_directory="./chroma_db", embedding_function=embeddings)
68
- docs = db3.similarity_search(query)
69
- chain = get_conversational_chain()
70
- response = chain({"input_documents": docs, "question": query}, return_only_outputs=True)
71
- st.write("Reply: ", response["output_text"])
 
72
 
73
  def main():
74
  st.header("Chat with your pdf💁")
 
33
  return text
34
 
35
  def text_splitter(text):
36
+ text_splitter = RecursiveCharacterTextSplitter(
37
  # Set a really small chunk size, just to show.
38
  chunk_size=500,
39
  chunk_overlap=20,
40
  separators=["\n\n","\n"," ",".",","])
41
+ chunks=text_splitter.split_text(text)
42
+ return chunks
43
 
44
  GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
45
 
46
  def embedding(chunk):
47
+ embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
48
+ vector = Chroma.from_documents(chunk)
49
+ db = Chroma.from_documents(vector, embeddings, persist_directory="./chroma_db")
50
 
51
  def get_conversational_chain():
52
  prompt_template = """
 
63
  return chain
64
 
65
  def user_call(query):
66
+ embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
67
+ #client = chromadb.HttpClient(host='127.0.0.1', port=8000, settings=Settings(allow_reset=True, anonymized_telemetry=False))
68
+ db3 = Chroma(persist_directory="./chroma_db", embedding_function=embeddings)
69
+ docs = db3.similarity_search(query)
70
+ chain = get_conversational_chain()
71
+ response = chain({"input_documents": docs, "question": query}, return_only_outputs=True)
72
+ st.write("Reply: ", response["output_text"])
73
 
74
  def main():
75
  st.header("Chat with your pdf💁")