import streamlit as st from PyPDF2 import PdfReader from langchain_text_splitters import RecursiveCharacterTextSplitter import os from langchain_google_genai import GoogleGenerativeAIEmbeddings from langchain_community.vectorstores import Chroma from langchain_google_genai import ChatGoogleGenerativeAI from langchain.chains.question_answering import load_qa_chain from langchain.prompts import PromptTemplate st.set_page_config(page_title="PDF CHATBOT", layout="wide") st.markdown(""" ## Document Genie: Get instant insights from your Documents This chatbot is built using the Retrieval-Augmented Generation (RAG) framework, leveraging Google's Generative AI model Gemini-PRO. It processes uploaded PDF documents by breaking them down into manageable chunks, creates a searchable vector store, and generates accurate answers to user queries. This advanced approach ensures high-quality, contextually relevant responses for an efficient and effective user experience. ### How It Works Follow these simple steps to interact with the chatbot: 1. **Upload Your Documents**: The system accepts multiple PDF files at once, analyzing the content to provide comprehensive insights. 2. **Ask a Question**: After processing the documents, ask any question related to the content of your uploaded documents for a precise answer. """) def get_pdf(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") def response_generate(text,query): text_splitter = RecursiveCharacterTextSplitter( # Set a really small chunk size, just to show. chunk_size=500, chunk_overlap=20, separators=["\n\n","\n"," ",".",","]) chunks=text_splitter.split_text(text) embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") db = Chroma.from_documents(chunks, embeddings) # Create retriever interface retriever = db.as_retriever() qa = RetrievalQA.from_chain_type(llm = GoogleGenerativeAI(model="gemini-pro", google_api_key=GOOGLE_API_KEY ), chain_type='stuff', retriever=retriever) return qa.run(query_text) def main(): st.header("Chat with your pdf💁") query = st.text_input("Ask a Question from the PDF Files", key="query") #if query: # user_call(query) st.title("Menu:") pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True, key="pdf_uploader") if st.button("Submit & Process", key="process_button"): with st.spinner("Processing..."): raw_text = get_pdf(pdf_docs) #text_chunks = text_splitter(raw_text) response = response_generate(raw_text,query) st.success("Done") st.write("Reply: ", response) if __name__ == "__main__": main()