Chandranshu Jain commited on
Commit
cfcca1d
·
verified ·
1 Parent(s): 29a0d03

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +90 -0
app.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PyPDF2 import PdfReader
3
+ from langchain_text_splitters import RecursiveCharacterTextSplitter
4
+ import os
5
+ from langchain_google_genai import GoogleGenerativeAIEmbeddings
6
+ from langchain_community.vectorstores import Chroma
7
+ from langchain_google_genai import ChatGoogleGenerativeAI
8
+ from langchain.chains.question_answering import load_qa_chain
9
+ from langchain.prompts import PromptTemplate
10
+
11
+ st.set_page_config(page_title="Document Genie", layout="wide")
12
+
13
+ st.markdown("""
14
+ ## Document Genie: Get instant insights from your Documents
15
+
16
+ This chatbot is built using the Retrieval-Augmented Generation (RAG) framework, leveraging Google's Generative AI model Gemini-PRO. It processes uploaded PDF documents by breaking them down into manageable chunks, creates a searchable vector store, and generates accurate answers to user queries. This advanced approach ensures high-quality, contextually relevant responses for an efficient and effective user experience.
17
+
18
+ ### How It Works
19
+
20
+ Follow these simple steps to interact with the chatbot:
21
+
22
+ 1. **Upload Your Documents**: The system accepts multiple PDF files at once, analyzing the content to provide comprehensive insights.
23
+
24
+ 2. **Ask a Question**: After processing the documents, ask any question related to the content of your uploaded documents for a precise answer.
25
+ """)
26
+
27
+ def get_pdf(pdf_docs):
28
+ text = ""
29
+ for pdf in pdf_docs:
30
+ pdf_reader = PdfReader(pdf)
31
+ for page in pdf_reader.pages:
32
+ text += page.extract_text()
33
+ return text
34
+
35
+ def text_splitter(text):
36
+ text_splitter = RecursiveCharacterTextSplitter(
37
+ # Set a really small chunk size, just to show.
38
+ chunk_size=500,
39
+ chunk_overlap=20,
40
+ separators=["\n\n","\n"," ",".",","])
41
+ chunks=text_splitter.split_text(text)
42
+ return chunks
43
+
44
+ from google.colab import userdata
45
+ os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY
46
+
47
+ def embedding(chunk):
48
+ embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
49
+ vector = Chroma.from_documents(chunk, embeddings)
50
+ db = Chroma.from_documents(vector, embeddings, persist_directory="./chroma_db")
51
+
52
+ def get_conversational_chain():
53
+ prompt_template = """
54
+ Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
55
+ provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
56
+ Context:\n {context}?\n
57
+ Question: \n{question}\n
58
+
59
+ Answer:
60
+ """
61
+ model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3, google_api_key=api_key)
62
+ prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
63
+ chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
64
+ return chain
65
+
66
+ def user_call(query):
67
+ embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
68
+ db3 = Chroma(persist_directory="./chroma_db", embedding_function=embeddings)
69
+ docs = db3.similarity_search(query)
70
+ chain = get_conversational_chain()
71
+ response = chain({"input_documents": docs, "question": query}, return_only_outputs=True)
72
+ st.write("Reply: ", response["output_text"])
73
+
74
+ def main():
75
+ st.header("Chat with your pdf💁")
76
+
77
+ query = st.text_input("Ask a Question from the PDF Files", key="query")
78
+
79
+ if query:
80
+ user_call(query)
81
+
82
+ with st.sidebar:
83
+ st.title("Menu:")
84
+ pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True, key="pdf_uploader")
85
+ if st.button("Submit & Process", key="process_button"):
86
+ with st.spinner("Processing..."):
87
+ raw_text = get_pdf(pdf_docs)
88
+ text_chunks = text_splitter(raw_text)
89
+ embedding(text_chunks)
90
+ st.success("Done")