optz the data loading
Browse files
app.py
CHANGED
@@ -9,7 +9,20 @@ import traceback
|
|
9 |
# Cache the dataset loading to avoid reloading on refresh
|
10 |
@lru_cache(maxsize=1)
|
11 |
def load_data():
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Calculate WER for a group of examples
|
15 |
def calculate_wer(examples):
|
@@ -21,11 +34,15 @@ def calculate_wer(examples):
|
|
21 |
valid_pairs = []
|
22 |
for ex in examples:
|
23 |
try:
|
|
|
|
|
|
|
|
|
24 |
transcription = ex.get("transcription", "")
|
25 |
input1 = ex.get("input1", "")
|
26 |
|
27 |
-
# Only add valid pairs
|
28 |
-
if transcription and input1:
|
29 |
# Limit text length to avoid potential issues
|
30 |
transcription = transcription.strip()[:1000] # Limit to 1000 chars
|
31 |
input1 = input1.strip()[:1000]
|
@@ -36,100 +53,93 @@ def calculate_wer(examples):
|
|
36 |
continue
|
37 |
|
38 |
if not valid_pairs:
|
|
|
39 |
return np.nan
|
40 |
|
|
|
|
|
|
|
|
|
41 |
# Unzip the pairs in one operation
|
42 |
references, hypotheses = zip(*valid_pairs) if valid_pairs else ([], [])
|
43 |
|
44 |
# Calculate WER
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
except Exception as e:
|
48 |
print(f"Error in calculate_wer: {str(e)}")
|
49 |
print(traceback.format_exc())
|
50 |
return np.nan
|
51 |
|
52 |
-
# Get WER metrics by source
|
53 |
def get_wer_metrics(dataset):
|
54 |
try:
|
55 |
-
#
|
56 |
-
|
57 |
-
test_by_source = {}
|
58 |
|
59 |
-
#
|
60 |
-
for ex in dataset
|
61 |
try:
|
62 |
source = ex.get("source", "unknown")
|
63 |
-
if source not in
|
64 |
-
|
65 |
-
|
66 |
except Exception as e:
|
67 |
-
print(f"Error processing
|
68 |
-
continue
|
69 |
-
|
70 |
-
for ex in dataset["test"]:
|
71 |
-
try:
|
72 |
-
source = ex.get("source", "unknown")
|
73 |
-
if source not in test_by_source:
|
74 |
-
test_by_source[source] = []
|
75 |
-
test_by_source[source].append(ex)
|
76 |
-
except Exception as e:
|
77 |
-
print(f"Error processing test example: {str(e)}")
|
78 |
continue
|
79 |
|
80 |
# Get all unique sources
|
81 |
-
all_sources = sorted(
|
82 |
|
83 |
# Calculate metrics for each source
|
84 |
results = []
|
85 |
for source in all_sources:
|
86 |
try:
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
train_count = len(train_examples)
|
91 |
-
test_count = len(test_examples)
|
92 |
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
95 |
|
96 |
results.append({
|
97 |
"Source": source,
|
98 |
-
"
|
99 |
-
"
|
100 |
-
"Test Count": test_count,
|
101 |
-
"Test WER": test_wer
|
102 |
})
|
103 |
except Exception as e:
|
104 |
print(f"Error processing source {source}: {str(e)}")
|
105 |
results.append({
|
106 |
"Source": source,
|
107 |
-
"
|
108 |
-
"
|
109 |
-
"Test Count": 0,
|
110 |
-
"Test WER": np.nan
|
111 |
})
|
112 |
|
113 |
# Calculate overall metrics once
|
114 |
try:
|
115 |
-
|
116 |
-
|
|
|
117 |
|
118 |
results.append({
|
119 |
"Source": "OVERALL",
|
120 |
-
"
|
121 |
-
"
|
122 |
-
"Test Count": len(dataset["test"]),
|
123 |
-
"Test WER": test_wer
|
124 |
})
|
125 |
except Exception as e:
|
126 |
print(f"Error calculating overall metrics: {str(e)}")
|
127 |
results.append({
|
128 |
"Source": "OVERALL",
|
129 |
-
"
|
130 |
-
"
|
131 |
-
"Test Count": len(dataset["test"]),
|
132 |
-
"Test WER": np.nan
|
133 |
})
|
134 |
|
135 |
return pd.DataFrame(results)
|
@@ -145,15 +155,10 @@ def format_dataframe(df):
|
|
145 |
# Use vectorized operations instead of apply
|
146 |
df = df.copy()
|
147 |
|
148 |
-
if "
|
149 |
-
mask = df["
|
150 |
-
df.loc[mask, "
|
151 |
-
df.loc[~mask, "
|
152 |
-
|
153 |
-
if "Test WER" in df.columns:
|
154 |
-
mask = df["Test WER"].notna()
|
155 |
-
df.loc[mask, "Test WER"] = df.loc[mask, "Test WER"].map(lambda x: f"{x:.4f}")
|
156 |
-
df.loc[~mask, "Test WER"] = "N/A"
|
157 |
|
158 |
return df
|
159 |
|
@@ -174,15 +179,15 @@ def create_leaderboard():
|
|
174 |
return pd.DataFrame([{"Error": error_msg}])
|
175 |
|
176 |
# Create the Gradio interface
|
177 |
-
with gr.Blocks(title="ASR Text Correction Leaderboard") as demo:
|
178 |
-
gr.Markdown("# ASR Text Correction Baseline WER Leaderboard")
|
179 |
-
gr.Markdown("Word Error Rate (WER) metrics for GenSEC-LLM/SLT-Task1-Post-ASR-Text-Correction dataset")
|
180 |
|
181 |
with gr.Row():
|
182 |
refresh_btn = gr.Button("Refresh Leaderboard")
|
183 |
|
184 |
with gr.Row():
|
185 |
-
error_output = gr.Textbox(label="
|
186 |
|
187 |
with gr.Row():
|
188 |
try:
|
@@ -197,7 +202,8 @@ with gr.Blocks(title="ASR Text Correction Leaderboard") as demo:
|
|
197 |
def refresh_and_report():
|
198 |
try:
|
199 |
df = create_leaderboard()
|
200 |
-
|
|
|
201 |
except Exception as e:
|
202 |
error_msg = f"Error refreshing leaderboard: {str(e)}\n{traceback.format_exc()}"
|
203 |
print(error_msg)
|
|
|
9 |
# Cache the dataset loading to avoid reloading on refresh
|
10 |
@lru_cache(maxsize=1)
|
11 |
def load_data():
|
12 |
+
try:
|
13 |
+
# Load only the test dataset by specifying the split
|
14 |
+
dataset = load_dataset("GenSEC-LLM/SLT-Task1-Post-ASR-Text-Correction", split="test")
|
15 |
+
return dataset
|
16 |
+
except Exception as e:
|
17 |
+
print(f"Error loading dataset: {str(e)}")
|
18 |
+
# Try loading with explicit file path if the default loading fails
|
19 |
+
try:
|
20 |
+
dataset = load_dataset("parquet",
|
21 |
+
data_files="https://huggingface.co/datasets/GenSEC-LLM/SLT-Task1-Post-ASR-Text-Correction/resolve/main/data/test-00000-of-00001.parquet")
|
22 |
+
return dataset
|
23 |
+
except Exception as e2:
|
24 |
+
print(f"Error loading with explicit path: {str(e2)}")
|
25 |
+
raise
|
26 |
|
27 |
# Calculate WER for a group of examples
|
28 |
def calculate_wer(examples):
|
|
|
34 |
valid_pairs = []
|
35 |
for ex in examples:
|
36 |
try:
|
37 |
+
# Print a sample example to debug
|
38 |
+
if len(valid_pairs) == 0:
|
39 |
+
print(f"Sample example keys: {ex.keys()}")
|
40 |
+
|
41 |
transcription = ex.get("transcription", "")
|
42 |
input1 = ex.get("input1", "")
|
43 |
|
44 |
+
# Only add valid pairs with non-empty strings
|
45 |
+
if transcription and input1 and isinstance(transcription, str) and isinstance(input1, str):
|
46 |
# Limit text length to avoid potential issues
|
47 |
transcription = transcription.strip()[:1000] # Limit to 1000 chars
|
48 |
input1 = input1.strip()[:1000]
|
|
|
53 |
continue
|
54 |
|
55 |
if not valid_pairs:
|
56 |
+
print("No valid pairs found for WER calculation")
|
57 |
return np.nan
|
58 |
|
59 |
+
# Print sample pairs for debugging
|
60 |
+
print(f"Sample pair for WER calculation: {valid_pairs[0]}")
|
61 |
+
print(f"Total valid pairs: {len(valid_pairs)}")
|
62 |
+
|
63 |
# Unzip the pairs in one operation
|
64 |
references, hypotheses = zip(*valid_pairs) if valid_pairs else ([], [])
|
65 |
|
66 |
# Calculate WER
|
67 |
+
try:
|
68 |
+
wer = jiwer.wer(references, hypotheses)
|
69 |
+
print(f"Calculated WER: {wer}")
|
70 |
+
return wer
|
71 |
+
except Exception as wer_error:
|
72 |
+
print(f"Error calculating WER: {str(wer_error)}")
|
73 |
+
return np.nan
|
74 |
|
75 |
except Exception as e:
|
76 |
print(f"Error in calculate_wer: {str(e)}")
|
77 |
print(traceback.format_exc())
|
78 |
return np.nan
|
79 |
|
80 |
+
# Get WER metrics by source
|
81 |
def get_wer_metrics(dataset):
|
82 |
try:
|
83 |
+
# Group examples by source
|
84 |
+
examples_by_source = {}
|
|
|
85 |
|
86 |
+
# Process all examples
|
87 |
+
for ex in dataset:
|
88 |
try:
|
89 |
source = ex.get("source", "unknown")
|
90 |
+
if source not in examples_by_source:
|
91 |
+
examples_by_source[source] = []
|
92 |
+
examples_by_source[source].append(ex)
|
93 |
except Exception as e:
|
94 |
+
print(f"Error processing example: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
continue
|
96 |
|
97 |
# Get all unique sources
|
98 |
+
all_sources = sorted(examples_by_source.keys())
|
99 |
|
100 |
# Calculate metrics for each source
|
101 |
results = []
|
102 |
for source in all_sources:
|
103 |
try:
|
104 |
+
examples = examples_by_source.get(source, [])
|
105 |
+
count = len(examples)
|
|
|
|
|
|
|
106 |
|
107 |
+
if count > 0:
|
108 |
+
print(f"Calculating WER for source {source} with {count} examples")
|
109 |
+
wer = calculate_wer(examples)
|
110 |
+
else:
|
111 |
+
wer = np.nan
|
112 |
|
113 |
results.append({
|
114 |
"Source": source,
|
115 |
+
"Count": count,
|
116 |
+
"WER": wer
|
|
|
|
|
117 |
})
|
118 |
except Exception as e:
|
119 |
print(f"Error processing source {source}: {str(e)}")
|
120 |
results.append({
|
121 |
"Source": source,
|
122 |
+
"Count": 0,
|
123 |
+
"WER": np.nan
|
|
|
|
|
124 |
})
|
125 |
|
126 |
# Calculate overall metrics once
|
127 |
try:
|
128 |
+
total_count = len(dataset)
|
129 |
+
print(f"Calculating overall WER for {total_count} examples")
|
130 |
+
overall_wer = calculate_wer(dataset)
|
131 |
|
132 |
results.append({
|
133 |
"Source": "OVERALL",
|
134 |
+
"Count": total_count,
|
135 |
+
"WER": overall_wer
|
|
|
|
|
136 |
})
|
137 |
except Exception as e:
|
138 |
print(f"Error calculating overall metrics: {str(e)}")
|
139 |
results.append({
|
140 |
"Source": "OVERALL",
|
141 |
+
"Count": len(dataset),
|
142 |
+
"WER": np.nan
|
|
|
|
|
143 |
})
|
144 |
|
145 |
return pd.DataFrame(results)
|
|
|
155 |
# Use vectorized operations instead of apply
|
156 |
df = df.copy()
|
157 |
|
158 |
+
if "WER" in df.columns:
|
159 |
+
mask = df["WER"].notna()
|
160 |
+
df.loc[mask, "WER"] = df.loc[mask, "WER"].map(lambda x: f"{x:.4f}")
|
161 |
+
df.loc[~mask, "WER"] = "N/A"
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
return df
|
164 |
|
|
|
179 |
return pd.DataFrame([{"Error": error_msg}])
|
180 |
|
181 |
# Create the Gradio interface
|
182 |
+
with gr.Blocks(title="ASR Text Correction Test Leaderboard") as demo:
|
183 |
+
gr.Markdown("# ASR Text Correction Baseline WER Leaderboard (Test Data)")
|
184 |
+
gr.Markdown("Word Error Rate (WER) metrics for test data in GenSEC-LLM/SLT-Task1-Post-ASR-Text-Correction dataset")
|
185 |
|
186 |
with gr.Row():
|
187 |
refresh_btn = gr.Button("Refresh Leaderboard")
|
188 |
|
189 |
with gr.Row():
|
190 |
+
error_output = gr.Textbox(label="Debug Information", visible=True)
|
191 |
|
192 |
with gr.Row():
|
193 |
try:
|
|
|
202 |
def refresh_and_report():
|
203 |
try:
|
204 |
df = create_leaderboard()
|
205 |
+
debug_info = "Leaderboard refreshed successfully."
|
206 |
+
return df, debug_info
|
207 |
except Exception as e:
|
208 |
error_msg = f"Error refreshing leaderboard: {str(e)}\n{traceback.format_exc()}"
|
209 |
print(error_msg)
|