finalize gui
Browse files
README.md
CHANGED
@@ -32,16 +32,16 @@ The leaderboard shows WER metrics for multiple speech recognition sources as col
|
|
32 |
The leaderboard displays three baseline approaches:
|
33 |
|
34 |
1. **No LM Baseline**: Uses the 1-best ASR output without any correction (input1)
|
35 |
-
2. **N-
|
36 |
-
3. **
|
37 |
|
38 |
## Metrics
|
39 |
|
40 |
The leaderboard displays as rows:
|
41 |
- **Number of Examples**: Count of examples in the test set for each source
|
42 |
- **Word Error Rate (No LM)**: WER between reference and 1-best ASR output
|
43 |
-
- **Word Error Rate (N-
|
44 |
-
- **Word Error Rate (
|
45 |
|
46 |
Lower WER values indicate better transcription accuracy.
|
47 |
|
@@ -56,15 +56,15 @@ Each cell shows the corresponding metric for that specific data source. The OVER
|
|
56 |
|
57 |
## Technical Details
|
58 |
|
59 |
-
### N-
|
60 |
This method scores each hypothesis in the N-best list using:
|
61 |
-
- N-gram statistics (
|
62 |
- Text length
|
63 |
- N-gram variety
|
64 |
|
65 |
The hypothesis with the highest score is selected.
|
66 |
|
67 |
-
###
|
68 |
This method uses a simple voting mechanism:
|
69 |
- Groups hypotheses of the same length
|
70 |
- For each word position, chooses the most common word across all hypotheses
|
|
|
32 |
The leaderboard displays three baseline approaches:
|
33 |
|
34 |
1. **No LM Baseline**: Uses the 1-best ASR output without any correction (input1)
|
35 |
+
2. **N-gram Ranking**: Ranks the N-best hypotheses using a simple n-gram statistics approach and chooses the best one
|
36 |
+
3. **Subwords Voting Correction**: Uses a voting-based method to correct the transcript by combining information from all N-best hypotheses
|
37 |
|
38 |
## Metrics
|
39 |
|
40 |
The leaderboard displays as rows:
|
41 |
- **Number of Examples**: Count of examples in the test set for each source
|
42 |
- **Word Error Rate (No LM)**: WER between reference and 1-best ASR output
|
43 |
+
- **Word Error Rate (N-gram Ranking)**: WER between reference and n-gram ranked best hypothesis
|
44 |
+
- **Word Error Rate (Subwords Voting Correction)**: WER between reference and the voting-corrected N-best hypothesis
|
45 |
|
46 |
Lower WER values indicate better transcription accuracy.
|
47 |
|
|
|
56 |
|
57 |
## Technical Details
|
58 |
|
59 |
+
### N-gram Ranking
|
60 |
This method scores each hypothesis in the N-best list using:
|
61 |
+
- N-gram statistics (4-grams)
|
62 |
- Text length
|
63 |
- N-gram variety
|
64 |
|
65 |
The hypothesis with the highest score is selected.
|
66 |
|
67 |
+
### Subwords Voting Correction
|
68 |
This method uses a simple voting mechanism:
|
69 |
- Groups hypotheses of the same length
|
70 |
- For each word position, chooses the most common word across all hypotheses
|
app.py
CHANGED
@@ -1,514 +1,305 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
from datasets import load_dataset
|
4 |
-
import jiwer
|
5 |
import numpy as np
|
6 |
from functools import lru_cache
|
7 |
-
import traceback
|
8 |
import re
|
9 |
-
import string
|
10 |
from collections import Counter
|
|
|
11 |
|
12 |
# Cache the dataset loading to avoid reloading on refresh
|
13 |
@lru_cache(maxsize=1)
|
14 |
def load_data():
|
15 |
try:
|
16 |
-
# Load only the test dataset by specifying the split
|
17 |
dataset = load_dataset("GenSEC-LLM/SLT-Task1-Post-ASR-Text-Correction", split="test")
|
18 |
return dataset
|
19 |
-
except Exception
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
dataset = load_dataset("parquet",
|
24 |
-
data_files="https://huggingface.co/datasets/GenSEC-LLM/SLT-Task1-Post-ASR-Text-Correction/resolve/main/data/test-00000-of-00001.parquet")
|
25 |
-
return dataset
|
26 |
-
except Exception as e2:
|
27 |
-
print(f"Error loading with explicit path: {str(e2)}")
|
28 |
-
raise
|
29 |
|
30 |
# Preprocess text for better WER calculation
|
31 |
def preprocess_text(text):
|
32 |
if not text or not isinstance(text, str):
|
33 |
return ""
|
34 |
-
# Convert to lowercase
|
35 |
text = text.lower()
|
36 |
-
# Remove punctuation
|
37 |
text = re.sub(r'[^\w\s]', '', text)
|
38 |
-
# Remove extra whitespace
|
39 |
text = re.sub(r'\s+', ' ', text).strip()
|
40 |
return text
|
41 |
|
42 |
-
#
|
43 |
def score_hypothesis(hypothesis, n=4):
|
44 |
-
"""Score a hypothesis using simple n-gram statistics"""
|
45 |
if not hypothesis:
|
46 |
return 0
|
47 |
|
48 |
words = hypothesis.split()
|
49 |
if len(words) < n:
|
50 |
-
return len(words)
|
51 |
|
52 |
-
# Count n-grams
|
53 |
ngrams = []
|
54 |
for i in range(len(words) - n + 1):
|
55 |
ngram = ' '.join(words[i:i+n])
|
56 |
ngrams.append(ngram)
|
57 |
|
58 |
-
# More unique n-grams might indicate better fluency
|
59 |
unique_ngrams = len(set(ngrams))
|
60 |
total_ngrams = len(ngrams)
|
61 |
-
|
62 |
-
# Score is a combination of length and n-gram variety
|
63 |
score = len(words) + unique_ngrams/max(1, total_ngrams) * 5
|
64 |
return score
|
65 |
|
66 |
-
# N-
|
67 |
def get_best_hypothesis_lm(hypotheses):
|
68 |
-
"""Choose the best hypothesis using a simple language model approach"""
|
69 |
if not hypotheses:
|
70 |
return ""
|
71 |
|
72 |
-
# Convert to list if it's not already
|
73 |
if isinstance(hypotheses, str):
|
74 |
return hypotheses
|
75 |
|
76 |
-
|
77 |
-
hypothesis_list = []
|
78 |
-
for h in hypotheses:
|
79 |
-
if isinstance(h, str):
|
80 |
-
hypothesis_list.append(preprocess_text(h))
|
81 |
|
82 |
if not hypothesis_list:
|
83 |
return ""
|
84 |
|
85 |
-
# Score each hypothesis and choose the best one
|
86 |
scores = [(score_hypothesis(h), h) for h in hypothesis_list]
|
87 |
best_hypothesis = max(scores, key=lambda x: x[0])[1]
|
88 |
return best_hypothesis
|
89 |
|
90 |
-
#
|
91 |
def correct_hypotheses(hypotheses):
|
92 |
-
"""Simple n-best correction by voting on words"""
|
93 |
if not hypotheses:
|
94 |
return ""
|
95 |
|
96 |
-
# Convert to list if it's not already
|
97 |
if isinstance(hypotheses, str):
|
98 |
return hypotheses
|
99 |
|
100 |
-
|
101 |
-
hypothesis_list = []
|
102 |
-
for h in hypotheses:
|
103 |
-
if isinstance(h, str):
|
104 |
-
hypothesis_list.append(preprocess_text(h))
|
105 |
|
106 |
if not hypothesis_list:
|
107 |
return ""
|
108 |
|
109 |
-
# Split hypotheses into words
|
110 |
word_lists = [h.split() for h in hypothesis_list]
|
111 |
-
|
112 |
-
# Find the most common length
|
113 |
lengths = [len(words) for words in word_lists]
|
|
|
114 |
if not lengths:
|
115 |
return ""
|
116 |
|
117 |
most_common_length = Counter(lengths).most_common(1)[0][0]
|
118 |
-
|
119 |
-
# Only consider hypotheses with the most common length
|
120 |
filtered_word_lists = [words for words in word_lists if len(words) == most_common_length]
|
121 |
|
122 |
if not filtered_word_lists:
|
123 |
-
# Fall back to the longest hypothesis if filtering removed everything
|
124 |
return max(hypothesis_list, key=len)
|
125 |
|
126 |
-
# Vote on each word position
|
127 |
corrected_words = []
|
128 |
for i in range(most_common_length):
|
129 |
position_words = [words[i] for words in filtered_word_lists]
|
130 |
most_common_word = Counter(position_words).most_common(1)[0][0]
|
131 |
corrected_words.append(most_common_word)
|
132 |
|
133 |
-
# Join the corrected words
|
134 |
return ' '.join(corrected_words)
|
135 |
|
136 |
-
#
|
137 |
def calculate_simple_wer(reference, hypothesis):
|
138 |
-
"""Calculate WER using a simple word-based approach"""
|
139 |
if not reference or not hypothesis:
|
140 |
-
return 1.0
|
141 |
-
|
142 |
-
# Split into words
|
143 |
ref_words = reference.split()
|
144 |
hyp_words = hypothesis.split()
|
145 |
|
146 |
-
|
147 |
-
try:
|
148 |
-
import editdistance
|
149 |
-
distance = editdistance.eval(ref_words, hyp_words)
|
150 |
-
except ImportError:
|
151 |
-
# Fallback to simple jiwer calculation
|
152 |
-
try:
|
153 |
-
# Try using the standard jiwer implementation
|
154 |
-
wer_value = jiwer.wer(reference, hypothesis)
|
155 |
-
return wer_value
|
156 |
-
except Exception:
|
157 |
-
# If all else fails, return 1.0 (maximum error)
|
158 |
-
print("Error calculating WER - fallback to maximum error")
|
159 |
-
return 1.0
|
160 |
|
161 |
-
# WER calculation
|
162 |
if len(ref_words) == 0:
|
163 |
return 1.0
|
164 |
return float(distance) / float(len(ref_words))
|
165 |
|
166 |
# Calculate WER for a group of examples with multiple methods
|
167 |
-
def calculate_wer_methods(examples):
|
168 |
-
if not examples:
|
169 |
-
return
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
# Try different possible field names
|
188 |
-
possible_reference_fields = ["transcription", "reference", "ground_truth", "target"]
|
189 |
-
possible_hypothesis_fields = ["input1", "hypothesis", "asr_output", "source_text"]
|
190 |
-
|
191 |
-
for field in possible_reference_fields:
|
192 |
-
if field in example:
|
193 |
-
print(f"Reference field '{field}' found with value: {str(example[field])[:100]}...")
|
194 |
-
|
195 |
-
for field in possible_hypothesis_fields:
|
196 |
-
if field in example:
|
197 |
-
print(f"Hypothesis field '{field}' found with value: {str(example[field])[:100]}...")
|
198 |
-
|
199 |
-
# Process each example in the dataset
|
200 |
-
wer_values_no_lm = []
|
201 |
-
wer_values_lm_ranking = []
|
202 |
-
wer_values_n_best_correction = []
|
203 |
-
|
204 |
-
valid_count = 0
|
205 |
-
skipped_count = 0
|
206 |
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
# Limit to first 200 examples for efficiency
|
211 |
-
items_to_process = examples.select(range(min(200, len(examples))))
|
212 |
-
else:
|
213 |
-
items_to_process = examples[:200] # First 200 examples
|
214 |
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
# Process the reference
|
224 |
-
reference = preprocess_text(transcription)
|
225 |
-
if not reference:
|
226 |
-
skipped_count += 1
|
227 |
-
continue
|
228 |
-
|
229 |
-
# Get 1-best hypothesis for baseline
|
230 |
-
input1 = ex.get("input1")
|
231 |
-
if input1 is None and "hypothesis" in ex and ex["hypothesis"]:
|
232 |
-
if isinstance(ex["hypothesis"], list) and len(ex["hypothesis"]) > 0:
|
233 |
-
input1 = ex["hypothesis"][0]
|
234 |
-
elif isinstance(ex["hypothesis"], str):
|
235 |
-
input1 = ex["hypothesis"]
|
236 |
-
|
237 |
-
# Get n-best hypotheses for other methods
|
238 |
-
n_best_hypotheses = ex.get("hypothesis", [])
|
239 |
-
|
240 |
-
# Process and evaluate all methods
|
241 |
-
|
242 |
-
# Method 1: No LM (1-best ASR output)
|
243 |
-
if input1 and isinstance(input1, str):
|
244 |
-
no_lm_hyp = preprocess_text(input1)
|
245 |
-
if no_lm_hyp:
|
246 |
-
wer_no_lm = calculate_simple_wer(reference, no_lm_hyp)
|
247 |
-
wer_values_no_lm.append(wer_no_lm)
|
248 |
-
|
249 |
-
# Method 2: LM ranking (best of n-best)
|
250 |
-
if n_best_hypotheses:
|
251 |
-
lm_best_hyp = get_best_hypothesis_lm(n_best_hypotheses)
|
252 |
-
if lm_best_hyp:
|
253 |
-
wer_lm = calculate_simple_wer(reference, lm_best_hyp)
|
254 |
-
wer_values_lm_ranking.append(wer_lm)
|
255 |
-
|
256 |
-
# Method 3: N-best correction (voting among n-best)
|
257 |
-
if n_best_hypotheses:
|
258 |
-
corrected_hyp = correct_hypotheses(n_best_hypotheses)
|
259 |
-
if corrected_hyp:
|
260 |
-
wer_corrected = calculate_simple_wer(reference, corrected_hyp)
|
261 |
-
wer_values_n_best_correction.append(wer_corrected)
|
262 |
-
|
263 |
-
# Count as valid if at least one method worked
|
264 |
-
if (wer_values_no_lm and i == len(wer_values_no_lm) - 1) or \
|
265 |
-
(wer_values_lm_ranking and i == len(wer_values_lm_ranking) - 1) or \
|
266 |
-
(wer_values_n_best_correction and i == len(wer_values_n_best_correction) - 1):
|
267 |
-
valid_count += 1
|
268 |
-
else:
|
269 |
-
skipped_count += 1
|
270 |
-
|
271 |
-
# Print debug info for a few examples
|
272 |
-
if i < 2:
|
273 |
-
print(f"\nExample {i} inspection:")
|
274 |
-
print(f" Reference: '{reference}'")
|
275 |
-
|
276 |
-
if input1 and isinstance(input1, str):
|
277 |
-
no_lm_hyp = preprocess_text(input1)
|
278 |
-
print(f" No LM (1-best): '{no_lm_hyp}'")
|
279 |
-
if no_lm_hyp:
|
280 |
-
wer = calculate_simple_wer(reference, no_lm_hyp)
|
281 |
-
print(f" No LM WER: {wer:.4f}")
|
282 |
-
|
283 |
-
if n_best_hypotheses:
|
284 |
-
print(f" N-best count: {len(n_best_hypotheses) if isinstance(n_best_hypotheses, list) else 'not a list'}")
|
285 |
-
lm_best_hyp = get_best_hypothesis_lm(n_best_hypotheses)
|
286 |
-
print(f" LM ranking best: '{lm_best_hyp}'")
|
287 |
-
if lm_best_hyp:
|
288 |
-
wer = calculate_simple_wer(reference, lm_best_hyp)
|
289 |
-
print(f" LM ranking WER: {wer:.4f}")
|
290 |
-
|
291 |
-
corrected_hyp = correct_hypotheses(n_best_hypotheses)
|
292 |
-
print(f" N-best correction: '{corrected_hyp}'")
|
293 |
-
if corrected_hyp:
|
294 |
-
wer = calculate_simple_wer(reference, corrected_hyp)
|
295 |
-
print(f" N-best correction WER: {wer:.4f}")
|
296 |
-
|
297 |
-
except Exception as ex_error:
|
298 |
-
print(f"Error processing example {i}: {str(ex_error)}")
|
299 |
-
skipped_count += 1
|
300 |
-
continue
|
301 |
|
302 |
-
#
|
303 |
-
|
304 |
|
305 |
-
|
306 |
-
|
307 |
-
|
|
|
|
|
|
|
308 |
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
|
|
|
|
313 |
|
314 |
-
|
|
|
|
|
|
|
|
|
|
|
315 |
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
|
|
|
|
320 |
|
321 |
-
# Get WER metrics by source
|
322 |
def get_wer_metrics(dataset):
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
# Process all examples
|
333 |
-
for i, ex in enumerate(dataset):
|
334 |
-
try:
|
335 |
-
source = ex.get("source", "unknown")
|
336 |
-
# Skip all_et05_real as requested
|
337 |
-
if source == "all_et05_real":
|
338 |
-
continue
|
339 |
-
|
340 |
-
if source not in examples_by_source:
|
341 |
-
examples_by_source[source] = []
|
342 |
-
examples_by_source[source].append(ex)
|
343 |
-
except Exception as e:
|
344 |
-
print(f"Error processing example {i}: {str(e)}")
|
345 |
-
continue
|
346 |
-
|
347 |
-
# Get all unique sources
|
348 |
-
all_sources = sorted(examples_by_source.keys())
|
349 |
-
print(f"Found sources: {all_sources}")
|
350 |
-
|
351 |
-
# Calculate metrics for each source
|
352 |
-
source_results = {}
|
353 |
-
for source in all_sources:
|
354 |
-
try:
|
355 |
-
examples = examples_by_source.get(source, [])
|
356 |
-
count = len(examples)
|
357 |
-
|
358 |
-
if count > 0:
|
359 |
-
print(f"\nCalculating WER for source {source} with {count} examples")
|
360 |
-
no_lm_wer, lm_ranking_wer, n_best_wer = calculate_wer_methods(examples)
|
361 |
-
else:
|
362 |
-
no_lm_wer, lm_ranking_wer, n_best_wer = np.nan, np.nan, np.nan
|
363 |
-
|
364 |
-
source_results[source] = {
|
365 |
-
"Count": count,
|
366 |
-
"No LM Baseline": no_lm_wer,
|
367 |
-
"N-best LM Ranking": lm_ranking_wer,
|
368 |
-
"N-best Correction": n_best_wer
|
369 |
-
}
|
370 |
-
except Exception as e:
|
371 |
-
print(f"Error processing source {source}: {str(e)}")
|
372 |
-
source_results[source] = {
|
373 |
-
"Count": 0,
|
374 |
-
"No LM Baseline": np.nan,
|
375 |
-
"N-best LM Ranking": np.nan,
|
376 |
-
"N-best Correction": np.nan
|
377 |
-
}
|
378 |
-
|
379 |
-
# Calculate overall metrics with a sample but excluding all_et05_real
|
380 |
-
try:
|
381 |
-
# Create a filtered dataset without all_et05_real
|
382 |
-
filtered_dataset = [ex for ex in dataset if ex.get("source") != "all_et05_real"]
|
383 |
-
total_count = len(filtered_dataset)
|
384 |
-
print(f"\nCalculating overall WER with a sample of examples (excluding all_et05_real)")
|
385 |
-
|
386 |
-
# Sample for calculation
|
387 |
-
sample_size = min(500, total_count)
|
388 |
-
sample_dataset = filtered_dataset[:sample_size]
|
389 |
-
no_lm_wer, lm_ranking_wer, n_best_wer = calculate_wer_methods(sample_dataset)
|
390 |
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
"N-best LM Ranking": np.nan,
|
404 |
-
"N-best Correction": np.nan
|
405 |
-
}
|
406 |
-
|
407 |
-
# Create flat DataFrame with labels in the first column
|
408 |
-
rows = []
|
409 |
-
|
410 |
-
# First add row for number of examples
|
411 |
-
example_row = {"Metric": "Number of Examples"}
|
412 |
-
for source in all_sources + ["OVERALL"]:
|
413 |
-
example_row[source] = source_results[source]["Count"]
|
414 |
-
rows.append(example_row)
|
415 |
-
|
416 |
-
# Then add rows for each WER method
|
417 |
-
no_lm_row = {"Metric": "Word Error Rate (No LM)"}
|
418 |
-
lm_ranking_row = {"Metric": "Word Error Rate (N-best LM Ranking)"}
|
419 |
-
n_best_row = {"Metric": "Word Error Rate (N-best Correction)"}
|
420 |
-
|
421 |
-
for source in all_sources + ["OVERALL"]:
|
422 |
-
no_lm_row[source] = source_results[source]["No LM Baseline"]
|
423 |
-
lm_ranking_row[source] = source_results[source]["N-best LM Ranking"]
|
424 |
-
n_best_row[source] = source_results[source]["N-best Correction"]
|
425 |
-
|
426 |
-
rows.append(no_lm_row)
|
427 |
-
rows.append(lm_ranking_row)
|
428 |
-
rows.append(n_best_row)
|
429 |
|
430 |
-
|
431 |
-
|
|
|
|
|
432 |
|
433 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
439 |
|
440 |
# Format the dataframe for display
|
441 |
def format_dataframe(df):
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
if "WER" in metric or "Error Rate" in metric:
|
450 |
-
wer_row_indices.append(i)
|
451 |
-
|
452 |
-
# Format WER values
|
453 |
-
for idx in wer_row_indices:
|
454 |
-
for col in df.columns:
|
455 |
-
if col != "Metric": # Skip the metric column
|
456 |
-
value = df.loc[idx, col]
|
457 |
-
if pd.notna(value):
|
458 |
-
df.loc[idx, col] = f"{value:.4f}"
|
459 |
-
else:
|
460 |
-
df.loc[idx, col] = "N/A"
|
461 |
-
|
462 |
-
return df
|
463 |
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
468 |
|
469 |
# Main function to create the leaderboard
|
470 |
def create_leaderboard():
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
return format_dataframe(metrics_df)
|
475 |
-
except Exception as e:
|
476 |
-
error_msg = f"Error creating leaderboard: {str(e)}\n{traceback.format_exc()}"
|
477 |
-
print(error_msg)
|
478 |
-
return pd.DataFrame([{"Error": error_msg}])
|
479 |
|
480 |
# Create the Gradio interface
|
481 |
-
with gr.Blocks(title="ASR Text Correction
|
482 |
gr.Markdown("# ASR Text Correction Baseline WER Leaderboard (Test Data)")
|
483 |
gr.Markdown("Word Error Rate (WER) metrics for different speech sources with multiple correction approaches")
|
484 |
|
485 |
with gr.Row():
|
486 |
refresh_btn = gr.Button("Refresh Leaderboard")
|
487 |
|
488 |
-
with gr.Row():
|
489 |
-
error_output = gr.Textbox(label="Debug Information", visible=True, lines=10)
|
490 |
-
|
491 |
with gr.Row():
|
492 |
try:
|
493 |
initial_df = create_leaderboard()
|
494 |
leaderboard = gr.DataFrame(initial_df)
|
495 |
-
except Exception
|
496 |
-
|
497 |
-
print(error_msg)
|
498 |
-
error_output.update(value=error_msg)
|
499 |
-
leaderboard = gr.DataFrame(pd.DataFrame([{"Error": error_msg}]))
|
500 |
|
501 |
def refresh_and_report():
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
return df, debug_info
|
506 |
-
except Exception as e:
|
507 |
-
error_msg = f"Error refreshing leaderboard: {str(e)}\n{traceback.format_exc()}"
|
508 |
-
print(error_msg)
|
509 |
-
return pd.DataFrame([{"Error": error_msg}]), error_msg
|
510 |
-
|
511 |
-
refresh_btn.click(refresh_and_report, outputs=[leaderboard, error_output])
|
512 |
|
513 |
if __name__ == "__main__":
|
514 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
from datasets import load_dataset
|
|
|
4 |
import numpy as np
|
5 |
from functools import lru_cache
|
|
|
6 |
import re
|
|
|
7 |
from collections import Counter
|
8 |
+
import editdistance
|
9 |
|
10 |
# Cache the dataset loading to avoid reloading on refresh
|
11 |
@lru_cache(maxsize=1)
|
12 |
def load_data():
|
13 |
try:
|
|
|
14 |
dataset = load_dataset("GenSEC-LLM/SLT-Task1-Post-ASR-Text-Correction", split="test")
|
15 |
return dataset
|
16 |
+
except Exception:
|
17 |
+
# Fallback to explicit file path if default loading fails
|
18 |
+
return load_dataset("parquet",
|
19 |
+
data_files="https://huggingface.co/datasets/GenSEC-LLM/SLT-Task1-Post-ASR-Text-Correction/resolve/main/data/test-00000-of-00001.parquet")
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# Preprocess text for better WER calculation
|
22 |
def preprocess_text(text):
|
23 |
if not text or not isinstance(text, str):
|
24 |
return ""
|
|
|
25 |
text = text.lower()
|
|
|
26 |
text = re.sub(r'[^\w\s]', '', text)
|
|
|
27 |
text = re.sub(r'\s+', ' ', text).strip()
|
28 |
return text
|
29 |
|
30 |
+
# N-gram scoring for hypothesis ranking
|
31 |
def score_hypothesis(hypothesis, n=4):
|
|
|
32 |
if not hypothesis:
|
33 |
return 0
|
34 |
|
35 |
words = hypothesis.split()
|
36 |
if len(words) < n:
|
37 |
+
return len(words)
|
38 |
|
|
|
39 |
ngrams = []
|
40 |
for i in range(len(words) - n + 1):
|
41 |
ngram = ' '.join(words[i:i+n])
|
42 |
ngrams.append(ngram)
|
43 |
|
|
|
44 |
unique_ngrams = len(set(ngrams))
|
45 |
total_ngrams = len(ngrams)
|
|
|
|
|
46 |
score = len(words) + unique_ngrams/max(1, total_ngrams) * 5
|
47 |
return score
|
48 |
|
49 |
+
# N-gram ranking approach
|
50 |
def get_best_hypothesis_lm(hypotheses):
|
|
|
51 |
if not hypotheses:
|
52 |
return ""
|
53 |
|
|
|
54 |
if isinstance(hypotheses, str):
|
55 |
return hypotheses
|
56 |
|
57 |
+
hypothesis_list = [preprocess_text(h) for h in hypotheses if isinstance(h, str)]
|
|
|
|
|
|
|
|
|
58 |
|
59 |
if not hypothesis_list:
|
60 |
return ""
|
61 |
|
|
|
62 |
scores = [(score_hypothesis(h), h) for h in hypothesis_list]
|
63 |
best_hypothesis = max(scores, key=lambda x: x[0])[1]
|
64 |
return best_hypothesis
|
65 |
|
66 |
+
# Subwords voting correction approach
|
67 |
def correct_hypotheses(hypotheses):
|
|
|
68 |
if not hypotheses:
|
69 |
return ""
|
70 |
|
|
|
71 |
if isinstance(hypotheses, str):
|
72 |
return hypotheses
|
73 |
|
74 |
+
hypothesis_list = [preprocess_text(h) for h in hypotheses if isinstance(h, str)]
|
|
|
|
|
|
|
|
|
75 |
|
76 |
if not hypothesis_list:
|
77 |
return ""
|
78 |
|
|
|
79 |
word_lists = [h.split() for h in hypothesis_list]
|
|
|
|
|
80 |
lengths = [len(words) for words in word_lists]
|
81 |
+
|
82 |
if not lengths:
|
83 |
return ""
|
84 |
|
85 |
most_common_length = Counter(lengths).most_common(1)[0][0]
|
|
|
|
|
86 |
filtered_word_lists = [words for words in word_lists if len(words) == most_common_length]
|
87 |
|
88 |
if not filtered_word_lists:
|
|
|
89 |
return max(hypothesis_list, key=len)
|
90 |
|
|
|
91 |
corrected_words = []
|
92 |
for i in range(most_common_length):
|
93 |
position_words = [words[i] for words in filtered_word_lists]
|
94 |
most_common_word = Counter(position_words).most_common(1)[0][0]
|
95 |
corrected_words.append(most_common_word)
|
96 |
|
|
|
97 |
return ' '.join(corrected_words)
|
98 |
|
99 |
+
# Calculate WER
|
100 |
def calculate_simple_wer(reference, hypothesis):
|
|
|
101 |
if not reference or not hypothesis:
|
102 |
+
return 1.0
|
103 |
+
|
|
|
104 |
ref_words = reference.split()
|
105 |
hyp_words = hypothesis.split()
|
106 |
|
107 |
+
distance = editdistance.eval(ref_words, hyp_words)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
|
|
109 |
if len(ref_words) == 0:
|
110 |
return 1.0
|
111 |
return float(distance) / float(len(ref_words))
|
112 |
|
113 |
# Calculate WER for a group of examples with multiple methods
|
114 |
+
def calculate_wer_methods(examples, max_samples=200):
|
115 |
+
if not examples or len(examples) == 0:
|
116 |
+
return np.nan, np.nan, np.nan
|
117 |
|
118 |
+
# Limit sample size for efficiency
|
119 |
+
if hasattr(examples, 'select'):
|
120 |
+
items_to_process = examples.select(range(min(max_samples, len(examples))))
|
121 |
+
else:
|
122 |
+
items_to_process = examples[:max_samples]
|
123 |
+
|
124 |
+
wer_values_no_lm = []
|
125 |
+
wer_values_lm_ranking = []
|
126 |
+
wer_values_n_best_correction = []
|
127 |
+
|
128 |
+
for ex in items_to_process:
|
129 |
+
# Get reference transcription
|
130 |
+
transcription = ex.get("transcription")
|
131 |
+
if not transcription or not isinstance(transcription, str):
|
132 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
reference = preprocess_text(transcription)
|
135 |
+
if not reference:
|
136 |
+
continue
|
|
|
|
|
|
|
|
|
137 |
|
138 |
+
# Get 1-best hypothesis for baseline
|
139 |
+
input1 = ex.get("input1")
|
140 |
+
if input1 is None and "hypothesis" in ex and ex["hypothesis"]:
|
141 |
+
if isinstance(ex["hypothesis"], list) and len(ex["hypothesis"]) > 0:
|
142 |
+
input1 = ex["hypothesis"][0]
|
143 |
+
elif isinstance(ex["hypothesis"], str):
|
144 |
+
input1 = ex["hypothesis"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
+
# Get n-best hypotheses for other methods
|
147 |
+
n_best_hypotheses = ex.get("hypothesis", [])
|
148 |
|
149 |
+
# Method 1: No LM (1-best ASR output)
|
150 |
+
if input1 and isinstance(input1, str):
|
151 |
+
no_lm_hyp = preprocess_text(input1)
|
152 |
+
if no_lm_hyp:
|
153 |
+
wer_no_lm = calculate_simple_wer(reference, no_lm_hyp)
|
154 |
+
wer_values_no_lm.append(wer_no_lm)
|
155 |
|
156 |
+
# Method 2: N-gram ranking
|
157 |
+
if n_best_hypotheses:
|
158 |
+
lm_best_hyp = get_best_hypothesis_lm(n_best_hypotheses)
|
159 |
+
if lm_best_hyp:
|
160 |
+
wer_lm = calculate_simple_wer(reference, lm_best_hyp)
|
161 |
+
wer_values_lm_ranking.append(wer_lm)
|
162 |
|
163 |
+
# Method 3: Subwords voting correction
|
164 |
+
if n_best_hypotheses:
|
165 |
+
corrected_hyp = correct_hypotheses(n_best_hypotheses)
|
166 |
+
if corrected_hyp:
|
167 |
+
wer_corrected = calculate_simple_wer(reference, corrected_hyp)
|
168 |
+
wer_values_n_best_correction.append(wer_corrected)
|
169 |
|
170 |
+
# Calculate average WER for each method
|
171 |
+
no_lm_wer = np.mean(wer_values_no_lm) if wer_values_no_lm else np.nan
|
172 |
+
lm_ranking_wer = np.mean(wer_values_lm_ranking) if wer_values_lm_ranking else np.nan
|
173 |
+
n_best_correction_wer = np.mean(wer_values_n_best_correction) if wer_values_n_best_correction else np.nan
|
174 |
+
|
175 |
+
return no_lm_wer, lm_ranking_wer, n_best_correction_wer
|
176 |
|
177 |
+
# Get WER metrics by source
|
178 |
def get_wer_metrics(dataset):
|
179 |
+
# Group examples by source
|
180 |
+
examples_by_source = {}
|
181 |
+
|
182 |
+
for ex in dataset:
|
183 |
+
source = ex.get("source", "unknown")
|
184 |
+
# Skip all_et05_real as requested
|
185 |
+
if source == "all_et05_real":
|
186 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
+
if source not in examples_by_source:
|
189 |
+
examples_by_source[source] = []
|
190 |
+
examples_by_source[source].append(ex)
|
191 |
+
|
192 |
+
# Get all unique sources
|
193 |
+
all_sources = sorted(examples_by_source.keys())
|
194 |
+
|
195 |
+
# Calculate metrics for each source
|
196 |
+
source_results = {}
|
197 |
+
for source in all_sources:
|
198 |
+
examples = examples_by_source.get(source, [])
|
199 |
+
count = len(examples)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
+
if count > 0:
|
202 |
+
no_lm_wer, lm_ranking_wer, n_best_wer = calculate_wer_methods(examples)
|
203 |
+
else:
|
204 |
+
no_lm_wer, lm_ranking_wer, n_best_wer = np.nan, np.nan, np.nan
|
205 |
|
206 |
+
source_results[source] = {
|
207 |
+
"Count": count,
|
208 |
+
"No LM Baseline": no_lm_wer,
|
209 |
+
"N-best LM Ranking": lm_ranking_wer,
|
210 |
+
"N-best Correction": n_best_wer
|
211 |
+
}
|
212 |
+
|
213 |
+
# Calculate overall metrics
|
214 |
+
filtered_dataset = [ex for ex in dataset if ex.get("source") != "all_et05_real"]
|
215 |
+
total_count = len(filtered_dataset)
|
216 |
+
|
217 |
+
sample_size = min(500, total_count)
|
218 |
+
sample_dataset = filtered_dataset[:sample_size]
|
219 |
+
no_lm_wer, lm_ranking_wer, n_best_wer = calculate_wer_methods(sample_dataset)
|
220 |
+
|
221 |
+
source_results["OVERALL"] = {
|
222 |
+
"Count": total_count,
|
223 |
+
"No LM Baseline": no_lm_wer,
|
224 |
+
"N-best LM Ranking": lm_ranking_wer,
|
225 |
+
"N-best Correction": n_best_wer
|
226 |
+
}
|
227 |
+
|
228 |
+
# Create flat DataFrame with labels in the first column
|
229 |
+
rows = []
|
230 |
+
|
231 |
+
# First add row for number of examples
|
232 |
+
example_row = {"Metric": "Number of Examples"}
|
233 |
+
for source in all_sources + ["OVERALL"]:
|
234 |
+
example_row[source] = source_results[source]["Count"]
|
235 |
+
rows.append(example_row)
|
236 |
+
|
237 |
+
# Then add rows for each WER method
|
238 |
+
no_lm_row = {"Metric": "Word Error Rate (No LM)"}
|
239 |
+
lm_ranking_row = {"Metric": "Word Error Rate (N-gram Ranking)"}
|
240 |
+
n_best_row = {"Metric": "Word Error Rate (Subwords Voting Correction)"}
|
241 |
|
242 |
+
for source in all_sources + ["OVERALL"]:
|
243 |
+
no_lm_row[source] = source_results[source]["No LM Baseline"]
|
244 |
+
lm_ranking_row[source] = source_results[source]["N-best LM Ranking"]
|
245 |
+
n_best_row[source] = source_results[source]["N-best Correction"]
|
246 |
+
|
247 |
+
rows.append(no_lm_row)
|
248 |
+
rows.append(lm_ranking_row)
|
249 |
+
rows.append(n_best_row)
|
250 |
+
|
251 |
+
# Create DataFrame from rows
|
252 |
+
result_df = pd.DataFrame(rows)
|
253 |
+
|
254 |
+
return result_df
|
255 |
|
256 |
# Format the dataframe for display
|
257 |
def format_dataframe(df):
|
258 |
+
df = df.copy()
|
259 |
+
|
260 |
+
# Find the rows containing WER values
|
261 |
+
wer_row_indices = []
|
262 |
+
for i, metric in enumerate(df["Metric"]):
|
263 |
+
if "WER" in metric or "Error Rate" in metric:
|
264 |
+
wer_row_indices.append(i)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
266 |
+
# Format WER values
|
267 |
+
for idx in wer_row_indices:
|
268 |
+
for col in df.columns:
|
269 |
+
if col != "Metric":
|
270 |
+
value = df.loc[idx, col]
|
271 |
+
if pd.notna(value):
|
272 |
+
df.loc[idx, col] = f"{value:.4f}"
|
273 |
+
else:
|
274 |
+
df.loc[idx, col] = "N/A"
|
275 |
+
|
276 |
+
return df
|
277 |
|
278 |
# Main function to create the leaderboard
|
279 |
def create_leaderboard():
|
280 |
+
dataset = load_data()
|
281 |
+
metrics_df = get_wer_metrics(dataset)
|
282 |
+
return format_dataframe(metrics_df)
|
|
|
|
|
|
|
|
|
|
|
283 |
|
284 |
# Create the Gradio interface
|
285 |
+
with gr.Blocks(title="ASR Text Correction Leaderboard") as demo:
|
286 |
gr.Markdown("# ASR Text Correction Baseline WER Leaderboard (Test Data)")
|
287 |
gr.Markdown("Word Error Rate (WER) metrics for different speech sources with multiple correction approaches")
|
288 |
|
289 |
with gr.Row():
|
290 |
refresh_btn = gr.Button("Refresh Leaderboard")
|
291 |
|
|
|
|
|
|
|
292 |
with gr.Row():
|
293 |
try:
|
294 |
initial_df = create_leaderboard()
|
295 |
leaderboard = gr.DataFrame(initial_df)
|
296 |
+
except Exception:
|
297 |
+
leaderboard = gr.DataFrame(pd.DataFrame([{"Error": "Error initializing leaderboard"}]))
|
|
|
|
|
|
|
298 |
|
299 |
def refresh_and_report():
|
300 |
+
return create_leaderboard()
|
301 |
+
|
302 |
+
refresh_btn.click(refresh_and_report, outputs=[leaderboard])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
|
304 |
if __name__ == "__main__":
|
305 |
demo.launch()
|