test
Browse files
app.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from datasets import load_dataset
|
4 |
+
import jiwer
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
# Load the dataset
|
8 |
+
def load_data():
|
9 |
+
dataset = load_dataset("GenSEC-LLM/SLT-Task1-Post-ASR-Text-Correction")
|
10 |
+
return dataset
|
11 |
+
|
12 |
+
# Calculate WER for a group of examples
|
13 |
+
def calculate_wer(examples):
|
14 |
+
if not examples:
|
15 |
+
return 0.0
|
16 |
+
|
17 |
+
hypotheses = [ex["hypothesis_concatenated"].split('.')[0].strip() for ex in examples]
|
18 |
+
transcriptions = [ex["transcription"].strip() for ex in examples]
|
19 |
+
|
20 |
+
wer = jiwer.wer(transcriptions, hypotheses)
|
21 |
+
return wer
|
22 |
+
|
23 |
+
# Get WER metrics by source and split
|
24 |
+
def get_wer_metrics(dataset):
|
25 |
+
results = []
|
26 |
+
|
27 |
+
# Get unique sources
|
28 |
+
train_sources = set([ex["source"] for ex in dataset["train"]])
|
29 |
+
test_sources = set([ex["source"] for ex in dataset["test"]])
|
30 |
+
all_sources = sorted(list(train_sources.union(test_sources)))
|
31 |
+
|
32 |
+
# Calculate WER for each source in train split
|
33 |
+
for source in all_sources:
|
34 |
+
train_examples = [ex for ex in dataset["train"] if ex["source"] == source]
|
35 |
+
train_count = len(train_examples)
|
36 |
+
train_wer = calculate_wer(train_examples) if train_count > 0 else np.nan
|
37 |
+
|
38 |
+
test_examples = [ex for ex in dataset["test"] if ex["source"] == source]
|
39 |
+
test_count = len(test_examples)
|
40 |
+
test_wer = calculate_wer(test_examples) if test_count > 0 else np.nan
|
41 |
+
|
42 |
+
results.append({
|
43 |
+
"Source": source,
|
44 |
+
"Train Count": train_count,
|
45 |
+
"Train WER": train_wer,
|
46 |
+
"Test Count": test_count,
|
47 |
+
"Test WER": test_wer
|
48 |
+
})
|
49 |
+
|
50 |
+
# Add overall metrics
|
51 |
+
train_wer = calculate_wer(dataset["train"])
|
52 |
+
test_wer = calculate_wer(dataset["test"])
|
53 |
+
|
54 |
+
results.append({
|
55 |
+
"Source": "OVERALL",
|
56 |
+
"Train Count": len(dataset["train"]),
|
57 |
+
"Train WER": train_wer,
|
58 |
+
"Test Count": len(dataset["test"]),
|
59 |
+
"Test WER": test_wer
|
60 |
+
})
|
61 |
+
|
62 |
+
return pd.DataFrame(results)
|
63 |
+
|
64 |
+
# Format the dataframe for display
|
65 |
+
def format_dataframe(df):
|
66 |
+
df["Train WER"] = df["Train WER"].apply(lambda x: f"{x:.4f}" if not pd.isna(x) else "N/A")
|
67 |
+
df["Test WER"] = df["Test WER"].apply(lambda x: f"{x:.4f}" if not pd.isna(x) else "N/A")
|
68 |
+
return df
|
69 |
+
|
70 |
+
# Main function to create the leaderboard
|
71 |
+
def create_leaderboard():
|
72 |
+
try:
|
73 |
+
dataset = load_data()
|
74 |
+
metrics_df = get_wer_metrics(dataset)
|
75 |
+
formatted_df = format_dataframe(metrics_df)
|
76 |
+
return formatted_df
|
77 |
+
except Exception as e:
|
78 |
+
return pd.DataFrame({"Error": [str(e)]})
|
79 |
+
|
80 |
+
# Create the Gradio interface
|
81 |
+
with gr.Blocks(title="ASR Text Correction Leaderboard") as demo:
|
82 |
+
gr.Markdown("# ASR Text Correction Baseline WER Leaderboard")
|
83 |
+
gr.Markdown("Word Error Rate (WER) metrics for GenSEC-LLM/SLT-Task1-Post-ASR-Text-Correction dataset")
|
84 |
+
|
85 |
+
with gr.Row():
|
86 |
+
refresh_btn = gr.Button("Refresh Leaderboard")
|
87 |
+
|
88 |
+
with gr.Row():
|
89 |
+
leaderboard = gr.DataFrame(create_leaderboard())
|
90 |
+
|
91 |
+
refresh_btn.click(create_leaderboard, outputs=leaderboard)
|
92 |
+
|
93 |
+
if __name__ == "__main__":
|
94 |
+
demo.launch()
|