huckiyang commited on
Commit
c7f8633
·
1 Parent(s): 92a4ace

optz the data loading

Browse files
Files changed (2) hide show
  1. README.md +30 -0
  2. app.py +46 -30
README.md CHANGED
@@ -11,4 +11,34 @@ license: mit
11
  short_description: Generative Error Correction (GER) Task Baseline, WER
12
  ---
13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
11
  short_description: Generative Error Correction (GER) Task Baseline, WER
12
  ---
13
 
14
+ # Post-ASR Text Correction WER Leaderboard
15
+
16
+ This application displays a baseline Word Error Rate (WER) leaderboard for the test data in the [GenSEC-LLM/SLT-Task1-Post-ASR-Text-Correction](https://huggingface.co/datasets/GenSEC-LLM/SLT-Task1-Post-ASR-Text-Correction) dataset.
17
+
18
+ ## Dataset Sources
19
+
20
+ The leaderboard shows WER metrics for multiple speech recognition sources as columns:
21
+ - CHiME4
22
+ - CORAAL
23
+ - CommonVoice
24
+ - LRS2
25
+ - LibriSpeech (Clean and Other)
26
+ - SwitchBoard
27
+ - Tedlium-3
28
+ - OVERALL (aggregate across all sources)
29
+
30
+ ## Metrics
31
+
32
+ The leaderboard displays as rows:
33
+ - **Count**: Number of examples in the test set for each source
34
+ - **No LM Baseline**: Word Error Rate between the reference transcription and 1-best ASR output without language model correction
35
+
36
+ ## Baseline Calculation
37
+
38
+ Word Error Rate is calculated between:
39
+ - Reference transcription ("transcription" field)
40
+ - 1-best ASR output ("input1" field or first item from "hypothesis" when input1 is unavailable)
41
+
42
+ Lower WER values indicate better transcription accuracy.
43
+
44
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py CHANGED
@@ -194,6 +194,10 @@ def get_wer_metrics(dataset):
194
  for i, ex in enumerate(dataset):
195
  try:
196
  source = ex.get("source", "unknown")
 
 
 
 
197
  if source not in examples_by_source:
198
  examples_by_source[source] = []
199
  examples_by_source[source].append(ex)
@@ -206,7 +210,7 @@ def get_wer_metrics(dataset):
206
  print(f"Found sources: {all_sources}")
207
 
208
  # Calculate metrics for each source
209
- results = []
210
  for source in all_sources:
211
  try:
212
  examples = examples_by_source.get(source, [])
@@ -218,43 +222,50 @@ def get_wer_metrics(dataset):
218
  else:
219
  wer = np.nan
220
 
221
- results.append({
222
- "Source": source,
223
  "Count": count,
224
- "WER": wer
225
- })
226
  except Exception as e:
227
  print(f"Error processing source {source}: {str(e)}")
228
- results.append({
229
- "Source": source,
230
  "Count": 0,
231
- "WER": np.nan
232
- })
233
 
234
- # Calculate overall metrics with a sample
235
  try:
236
- total_count = len(dataset)
237
- print(f"\nCalculating overall WER with a sample of examples")
 
 
 
238
  # Sample for calculation
239
  sample_size = min(500, total_count)
240
- sample_dataset = dataset.select(range(sample_size))
241
  overall_wer = calculate_wer(sample_dataset)
242
 
243
- results.append({
244
- "Source": "OVERALL",
245
  "Count": total_count,
246
- "WER": overall_wer
247
- })
248
  except Exception as e:
249
  print(f"Error calculating overall metrics: {str(e)}")
250
  print(traceback.format_exc())
251
- results.append({
252
- "Source": "OVERALL",
253
- "Count": len(dataset),
254
- "WER": np.nan
255
- })
 
 
 
256
 
257
- return pd.DataFrame(results)
 
 
 
 
258
 
259
  except Exception as e:
260
  print(f"Error in get_wer_metrics: {str(e)}")
@@ -267,12 +278,17 @@ def format_dataframe(df):
267
  # Use vectorized operations instead of apply
268
  df = df.copy()
269
 
270
- if "WER" in df.columns:
271
- # Convert to string type first to avoid warning
272
- df["WER"] = df["WER"].astype(object)
273
- mask = df["WER"].notna()
274
- df.loc[mask, "WER"] = df.loc[mask, "WER"].map(lambda x: f"{x:.4f}")
275
- df.loc[~mask, "WER"] = "N/A"
 
 
 
 
 
276
 
277
  return df
278
 
@@ -295,7 +311,7 @@ def create_leaderboard():
295
  # Create the Gradio interface
296
  with gr.Blocks(title="ASR Text Correction Test Leaderboard") as demo:
297
  gr.Markdown("# ASR Text Correction Baseline WER Leaderboard (Test Data)")
298
- gr.Markdown("Word Error Rate (WER) metrics for test data in GenSEC-LLM/SLT-Task1-Post-ASR-Text-Correction dataset")
299
 
300
  with gr.Row():
301
  refresh_btn = gr.Button("Refresh Leaderboard")
 
194
  for i, ex in enumerate(dataset):
195
  try:
196
  source = ex.get("source", "unknown")
197
+ # Skip all_et05_real as requested
198
+ if source == "all_et05_real":
199
+ continue
200
+
201
  if source not in examples_by_source:
202
  examples_by_source[source] = []
203
  examples_by_source[source].append(ex)
 
210
  print(f"Found sources: {all_sources}")
211
 
212
  # Calculate metrics for each source
213
+ source_results = {}
214
  for source in all_sources:
215
  try:
216
  examples = examples_by_source.get(source, [])
 
222
  else:
223
  wer = np.nan
224
 
225
+ source_results[source] = {
 
226
  "Count": count,
227
+ "No LM Baseline": wer
228
+ }
229
  except Exception as e:
230
  print(f"Error processing source {source}: {str(e)}")
231
+ source_results[source] = {
 
232
  "Count": 0,
233
+ "No LM Baseline": np.nan
234
+ }
235
 
236
+ # Calculate overall metrics with a sample but excluding all_et05_real
237
  try:
238
+ # Create a filtered dataset without all_et05_real
239
+ filtered_dataset = [ex for ex in dataset if ex.get("source") != "all_et05_real"]
240
+ total_count = len(filtered_dataset)
241
+ print(f"\nCalculating overall WER with a sample of examples (excluding all_et05_real)")
242
+
243
  # Sample for calculation
244
  sample_size = min(500, total_count)
245
+ sample_dataset = filtered_dataset[:sample_size]
246
  overall_wer = calculate_wer(sample_dataset)
247
 
248
+ source_results["OVERALL"] = {
 
249
  "Count": total_count,
250
+ "No LM Baseline": overall_wer
251
+ }
252
  except Exception as e:
253
  print(f"Error calculating overall metrics: {str(e)}")
254
  print(traceback.format_exc())
255
+ source_results["OVERALL"] = {
256
+ "Count": len(filtered_dataset),
257
+ "No LM Baseline": np.nan
258
+ }
259
+
260
+ # Create a transposed DataFrame with metrics as rows and sources as columns
261
+ metrics = ["Count", "No LM Baseline"]
262
+ result_df = pd.DataFrame(index=metrics, columns=all_sources + ["OVERALL"])
263
 
264
+ for source in all_sources + ["OVERALL"]:
265
+ for metric in metrics:
266
+ result_df.loc[metric, source] = source_results[source][metric]
267
+
268
+ return result_df
269
 
270
  except Exception as e:
271
  print(f"Error in get_wer_metrics: {str(e)}")
 
278
  # Use vectorized operations instead of apply
279
  df = df.copy()
280
 
281
+ # Format WER values
282
+ if "No LM Baseline" in df.index:
283
+ # Convert to object type first to avoid warnings
284
+ df.loc["No LM Baseline"] = df.loc["No LM Baseline"].astype(object)
285
+
286
+ for col in df.columns:
287
+ value = df.loc["No LM Baseline", col]
288
+ if pd.notna(value):
289
+ df.loc["No LM Baseline", col] = f"{value:.4f}"
290
+ else:
291
+ df.loc["No LM Baseline", col] = "N/A"
292
 
293
  return df
294
 
 
311
  # Create the Gradio interface
312
  with gr.Blocks(title="ASR Text Correction Test Leaderboard") as demo:
313
  gr.Markdown("# ASR Text Correction Baseline WER Leaderboard (Test Data)")
314
+ gr.Markdown("Word Error Rate (WER) metrics for different speech sources with No Language Model baseline")
315
 
316
  with gr.Row():
317
  refresh_btn = gr.Button("Refresh Leaderboard")