more LM baseline
Browse files
README.md
CHANGED
@@ -27,27 +27,47 @@ The leaderboard shows WER metrics for multiple speech recognition sources as col
|
|
27 |
- Tedlium-3
|
28 |
- OVERALL (aggregate across all sources)
|
29 |
|
30 |
-
##
|
31 |
|
32 |
-
The leaderboard displays
|
33 |
-
- **Count**: Number of examples in the test set for each source
|
34 |
-
- **No LM Baseline**: Word Error Rate between the reference transcription and 1-best ASR output without language model correction
|
35 |
|
36 |
-
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
- Reference transcription ("transcription" field)
|
40 |
-
- 1-best ASR output ("input1" field or first item from "hypothesis" when input1 is unavailable)
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
|
46 |
## Table Structure
|
47 |
|
48 |
The leaderboard is displayed as a table with:
|
49 |
|
50 |
-
- **Rows**:
|
51 |
- **Columns**: Different data sources (CHiME4, CORAAL, CommonVoice, etc.) and OVERALL
|
52 |
|
53 |
Each cell shows the corresponding metric for that specific data source. The OVERALL column shows aggregate metrics across all sources.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
- Tedlium-3
|
28 |
- OVERALL (aggregate across all sources)
|
29 |
|
30 |
+
## Baseline Methods
|
31 |
|
32 |
+
The leaderboard displays three baseline approaches:
|
|
|
|
|
33 |
|
34 |
+
1. **No LM Baseline**: Uses the 1-best ASR output without any correction (input1)
|
35 |
+
2. **N-best LM Ranking**: Ranks the N-best hypotheses using a simple language model approach and chooses the best one
|
36 |
+
3. **N-best Correction**: Uses a voting-based method to correct the transcript by combining information from all N-best hypotheses
|
37 |
|
38 |
+
## Metrics
|
|
|
|
|
39 |
|
40 |
+
The leaderboard displays as rows:
|
41 |
+
- **Number of Examples**: Count of examples in the test set for each source
|
42 |
+
- **Word Error Rate (No LM)**: WER between reference and 1-best ASR output
|
43 |
+
- **Word Error Rate (N-best LM Ranking)**: WER between reference and LM-ranked best hypothesis
|
44 |
+
- **Word Error Rate (N-best Correction)**: WER between reference and the corrected N-best hypothesis
|
45 |
|
46 |
+
Lower WER values indicate better transcription accuracy.
|
47 |
|
48 |
## Table Structure
|
49 |
|
50 |
The leaderboard is displayed as a table with:
|
51 |
|
52 |
+
- **Rows**: Different metrics (example counts and WER values for each method)
|
53 |
- **Columns**: Different data sources (CHiME4, CORAAL, CommonVoice, etc.) and OVERALL
|
54 |
|
55 |
Each cell shows the corresponding metric for that specific data source. The OVERALL column shows aggregate metrics across all sources.
|
56 |
+
|
57 |
+
## Technical Details
|
58 |
+
|
59 |
+
### N-best LM Ranking
|
60 |
+
This method scores each hypothesis in the N-best list using:
|
61 |
+
- N-gram statistics (bigrams)
|
62 |
+
- Text length
|
63 |
+
- N-gram variety
|
64 |
+
|
65 |
+
The hypothesis with the highest score is selected.
|
66 |
+
|
67 |
+
### N-best Correction
|
68 |
+
This method uses a simple voting mechanism:
|
69 |
+
- Groups hypotheses of the same length
|
70 |
+
- For each word position, chooses the most common word across all hypotheses
|
71 |
+
- Constructs a new transcript from these voted words
|
72 |
+
|
73 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -6,6 +6,8 @@ import numpy as np
|
|
6 |
from functools import lru_cache
|
7 |
import traceback
|
8 |
import re
|
|
|
|
|
9 |
|
10 |
# Cache the dataset loading to avoid reloading on refresh
|
11 |
@lru_cache(maxsize=1)
|
@@ -37,6 +39,100 @@ def preprocess_text(text):
|
|
37 |
text = re.sub(r'\s+', ' ', text).strip()
|
38 |
return text
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
# Fix the Levenshtein distance calculation to avoid dependence on jiwer internals
|
41 |
def calculate_simple_wer(reference, hypothesis):
|
42 |
"""Calculate WER using a simple word-based approach"""
|
@@ -67,10 +163,10 @@ def calculate_simple_wer(reference, hypothesis):
|
|
67 |
return 1.0
|
68 |
return float(distance) / float(len(ref_words))
|
69 |
|
70 |
-
# Calculate WER for a group of examples
|
71 |
-
def
|
72 |
if not examples:
|
73 |
-
return 0.0
|
74 |
|
75 |
try:
|
76 |
# Check if examples is a Dataset or a list
|
@@ -83,7 +179,7 @@ def calculate_wer(examples):
|
|
83 |
example = examples[0]
|
84 |
else:
|
85 |
print("No examples found")
|
86 |
-
return np.nan
|
87 |
|
88 |
print("\n===== EXAMPLE DATA INSPECTION =====")
|
89 |
print(f"Keys in example: {example.keys()}")
|
@@ -101,7 +197,10 @@ def calculate_wer(examples):
|
|
101 |
print(f"Hypothesis field '{field}' found with value: {str(example[field])[:100]}...")
|
102 |
|
103 |
# Process each example in the dataset
|
104 |
-
|
|
|
|
|
|
|
105 |
valid_count = 0
|
106 |
skipped_count = 0
|
107 |
|
@@ -115,10 +214,19 @@ def calculate_wer(examples):
|
|
115 |
|
116 |
for i, ex in enumerate(items_to_process):
|
117 |
try:
|
118 |
-
#
|
119 |
transcription = ex.get("transcription")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
-
#
|
122 |
input1 = ex.get("input1")
|
123 |
if input1 is None and "hypothesis" in ex and ex["hypothesis"]:
|
124 |
if isinstance(ex["hypothesis"], list) and len(ex["hypothesis"]) > 0:
|
@@ -126,58 +234,89 @@ def calculate_wer(examples):
|
|
126 |
elif isinstance(ex["hypothesis"], str):
|
127 |
input1 = ex["hypothesis"]
|
128 |
|
129 |
-
#
|
130 |
-
|
131 |
-
print(f"\nExample {i} inspection:")
|
132 |
-
print(f" transcription: {transcription}")
|
133 |
-
print(f" input1: {input1}")
|
134 |
-
print(f" type checks: transcription={type(transcription)}, input1={type(input1)}")
|
135 |
|
136 |
-
#
|
137 |
-
if transcription is None or input1 is None:
|
138 |
-
skipped_count += 1
|
139 |
-
if i < 3:
|
140 |
-
print(f" SKIPPED: Missing field (transcription={transcription is None}, input1={input1 is None})")
|
141 |
-
continue
|
142 |
|
143 |
-
#
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
-
#
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
157 |
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
except Exception as ex_error:
|
162 |
print(f"Error processing example {i}: {str(ex_error)}")
|
163 |
skipped_count += 1
|
164 |
continue
|
165 |
|
166 |
-
# Calculate average WER
|
167 |
print(f"\nProcessing summary: Valid pairs: {valid_count}, Skipped: {skipped_count}")
|
168 |
|
169 |
-
if
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
-
|
174 |
-
print(f"Calculated {len(wer_values)} pairs with average WER: {avg_wer:.4f}")
|
175 |
-
return avg_wer
|
176 |
|
177 |
except Exception as e:
|
178 |
print(f"Error in calculate_wer: {str(e)}")
|
179 |
print(traceback.format_exc())
|
180 |
-
return np.nan
|
181 |
|
182 |
# Get WER metrics by source
|
183 |
def get_wer_metrics(dataset):
|
@@ -218,19 +357,23 @@ def get_wer_metrics(dataset):
|
|
218 |
|
219 |
if count > 0:
|
220 |
print(f"\nCalculating WER for source {source} with {count} examples")
|
221 |
-
|
222 |
else:
|
223 |
-
|
224 |
|
225 |
source_results[source] = {
|
226 |
"Count": count,
|
227 |
-
"No LM Baseline":
|
|
|
|
|
228 |
}
|
229 |
except Exception as e:
|
230 |
print(f"Error processing source {source}: {str(e)}")
|
231 |
source_results[source] = {
|
232 |
"Count": 0,
|
233 |
-
"No LM Baseline": np.nan
|
|
|
|
|
234 |
}
|
235 |
|
236 |
# Calculate overall metrics with a sample but excluding all_et05_real
|
@@ -243,26 +386,35 @@ def get_wer_metrics(dataset):
|
|
243 |
# Sample for calculation
|
244 |
sample_size = min(500, total_count)
|
245 |
sample_dataset = filtered_dataset[:sample_size]
|
246 |
-
|
247 |
|
248 |
source_results["OVERALL"] = {
|
249 |
"Count": total_count,
|
250 |
-
"No LM Baseline":
|
|
|
|
|
251 |
}
|
252 |
except Exception as e:
|
253 |
print(f"Error calculating overall metrics: {str(e)}")
|
254 |
print(traceback.format_exc())
|
255 |
source_results["OVERALL"] = {
|
256 |
"Count": len(filtered_dataset),
|
257 |
-
"No LM Baseline": np.nan
|
|
|
|
|
258 |
}
|
259 |
|
260 |
# Create a transposed DataFrame with metrics as rows and sources as columns
|
261 |
-
metrics = ["Count", "No LM Baseline"]
|
262 |
result_df = pd.DataFrame(index=metrics, columns=["Metric"] + all_sources + ["OVERALL"])
|
263 |
|
264 |
# Add descriptive column
|
265 |
-
result_df["Metric"] = [
|
|
|
|
|
|
|
|
|
|
|
266 |
|
267 |
for source in all_sources + ["OVERALL"]:
|
268 |
for metric in metrics:
|
@@ -284,14 +436,13 @@ def format_dataframe(df):
|
|
284 |
# Use vectorized operations instead of apply
|
285 |
df = df.copy()
|
286 |
|
287 |
-
# Find the
|
288 |
-
|
289 |
for idx in df.index:
|
290 |
if "WER" in idx or "Error Rate" in idx:
|
291 |
-
|
292 |
-
break
|
293 |
|
294 |
-
|
295 |
# Convert to object type first to avoid warnings
|
296 |
df.loc[wer_row_index] = df.loc[wer_row_index].astype(object)
|
297 |
|
@@ -323,7 +474,7 @@ def create_leaderboard():
|
|
323 |
# Create the Gradio interface
|
324 |
with gr.Blocks(title="ASR Text Correction Test Leaderboard") as demo:
|
325 |
gr.Markdown("# ASR Text Correction Baseline WER Leaderboard (Test Data)")
|
326 |
-
gr.Markdown("Word Error Rate (WER) metrics for different speech sources with
|
327 |
|
328 |
with gr.Row():
|
329 |
refresh_btn = gr.Button("Refresh Leaderboard")
|
|
|
6 |
from functools import lru_cache
|
7 |
import traceback
|
8 |
import re
|
9 |
+
import string
|
10 |
+
from collections import Counter
|
11 |
|
12 |
# Cache the dataset loading to avoid reloading on refresh
|
13 |
@lru_cache(maxsize=1)
|
|
|
39 |
text = re.sub(r'\s+', ' ', text).strip()
|
40 |
return text
|
41 |
|
42 |
+
# Simple language model scoring - count n-grams
|
43 |
+
def score_hypothesis(hypothesis, n=4):
|
44 |
+
"""Score a hypothesis using simple n-gram statistics"""
|
45 |
+
if not hypothesis:
|
46 |
+
return 0
|
47 |
+
|
48 |
+
words = hypothesis.split()
|
49 |
+
if len(words) < n:
|
50 |
+
return len(words) # Just return word count for very short texts
|
51 |
+
|
52 |
+
# Count n-grams
|
53 |
+
ngrams = []
|
54 |
+
for i in range(len(words) - n + 1):
|
55 |
+
ngram = ' '.join(words[i:i+n])
|
56 |
+
ngrams.append(ngram)
|
57 |
+
|
58 |
+
# More unique n-grams might indicate better fluency
|
59 |
+
unique_ngrams = len(set(ngrams))
|
60 |
+
total_ngrams = len(ngrams)
|
61 |
+
|
62 |
+
# Score is a combination of length and n-gram variety
|
63 |
+
score = len(words) + unique_ngrams/max(1, total_ngrams) * 5
|
64 |
+
return score
|
65 |
+
|
66 |
+
# N-best LM ranking approach
|
67 |
+
def get_best_hypothesis_lm(hypotheses):
|
68 |
+
"""Choose the best hypothesis using a simple language model approach"""
|
69 |
+
if not hypotheses:
|
70 |
+
return ""
|
71 |
+
|
72 |
+
# Convert to list if it's not already
|
73 |
+
if isinstance(hypotheses, str):
|
74 |
+
return hypotheses
|
75 |
+
|
76 |
+
# Ensure we have a list of strings
|
77 |
+
hypothesis_list = []
|
78 |
+
for h in hypotheses:
|
79 |
+
if isinstance(h, str):
|
80 |
+
hypothesis_list.append(preprocess_text(h))
|
81 |
+
|
82 |
+
if not hypothesis_list:
|
83 |
+
return ""
|
84 |
+
|
85 |
+
# Score each hypothesis and choose the best one
|
86 |
+
scores = [(score_hypothesis(h), h) for h in hypothesis_list]
|
87 |
+
best_hypothesis = max(scores, key=lambda x: x[0])[1]
|
88 |
+
return best_hypothesis
|
89 |
+
|
90 |
+
# N-best correction approach
|
91 |
+
def correct_hypotheses(hypotheses):
|
92 |
+
"""Simple n-best correction by voting on words"""
|
93 |
+
if not hypotheses:
|
94 |
+
return ""
|
95 |
+
|
96 |
+
# Convert to list if it's not already
|
97 |
+
if isinstance(hypotheses, str):
|
98 |
+
return hypotheses
|
99 |
+
|
100 |
+
# Ensure we have a list of strings
|
101 |
+
hypothesis_list = []
|
102 |
+
for h in hypotheses:
|
103 |
+
if isinstance(h, str):
|
104 |
+
hypothesis_list.append(preprocess_text(h))
|
105 |
+
|
106 |
+
if not hypothesis_list:
|
107 |
+
return ""
|
108 |
+
|
109 |
+
# Split hypotheses into words
|
110 |
+
word_lists = [h.split() for h in hypothesis_list]
|
111 |
+
|
112 |
+
# Find the most common length
|
113 |
+
lengths = [len(words) for words in word_lists]
|
114 |
+
if not lengths:
|
115 |
+
return ""
|
116 |
+
|
117 |
+
most_common_length = Counter(lengths).most_common(1)[0][0]
|
118 |
+
|
119 |
+
# Only consider hypotheses with the most common length
|
120 |
+
filtered_word_lists = [words for words in word_lists if len(words) == most_common_length]
|
121 |
+
|
122 |
+
if not filtered_word_lists:
|
123 |
+
# Fall back to the longest hypothesis if filtering removed everything
|
124 |
+
return max(hypothesis_list, key=len)
|
125 |
+
|
126 |
+
# Vote on each word position
|
127 |
+
corrected_words = []
|
128 |
+
for i in range(most_common_length):
|
129 |
+
position_words = [words[i] for words in filtered_word_lists]
|
130 |
+
most_common_word = Counter(position_words).most_common(1)[0][0]
|
131 |
+
corrected_words.append(most_common_word)
|
132 |
+
|
133 |
+
# Join the corrected words
|
134 |
+
return ' '.join(corrected_words)
|
135 |
+
|
136 |
# Fix the Levenshtein distance calculation to avoid dependence on jiwer internals
|
137 |
def calculate_simple_wer(reference, hypothesis):
|
138 |
"""Calculate WER using a simple word-based approach"""
|
|
|
163 |
return 1.0
|
164 |
return float(distance) / float(len(ref_words))
|
165 |
|
166 |
+
# Calculate WER for a group of examples with multiple methods
|
167 |
+
def calculate_wer_methods(examples):
|
168 |
if not examples:
|
169 |
+
return 0.0, 0.0, 0.0
|
170 |
|
171 |
try:
|
172 |
# Check if examples is a Dataset or a list
|
|
|
179 |
example = examples[0]
|
180 |
else:
|
181 |
print("No examples found")
|
182 |
+
return np.nan, np.nan, np.nan
|
183 |
|
184 |
print("\n===== EXAMPLE DATA INSPECTION =====")
|
185 |
print(f"Keys in example: {example.keys()}")
|
|
|
197 |
print(f"Hypothesis field '{field}' found with value: {str(example[field])[:100]}...")
|
198 |
|
199 |
# Process each example in the dataset
|
200 |
+
wer_values_no_lm = []
|
201 |
+
wer_values_lm_ranking = []
|
202 |
+
wer_values_n_best_correction = []
|
203 |
+
|
204 |
valid_count = 0
|
205 |
skipped_count = 0
|
206 |
|
|
|
214 |
|
215 |
for i, ex in enumerate(items_to_process):
|
216 |
try:
|
217 |
+
# Get reference transcription
|
218 |
transcription = ex.get("transcription")
|
219 |
+
if not transcription or not isinstance(transcription, str):
|
220 |
+
skipped_count += 1
|
221 |
+
continue
|
222 |
+
|
223 |
+
# Process the reference
|
224 |
+
reference = preprocess_text(transcription)
|
225 |
+
if not reference:
|
226 |
+
skipped_count += 1
|
227 |
+
continue
|
228 |
|
229 |
+
# Get 1-best hypothesis for baseline
|
230 |
input1 = ex.get("input1")
|
231 |
if input1 is None and "hypothesis" in ex and ex["hypothesis"]:
|
232 |
if isinstance(ex["hypothesis"], list) and len(ex["hypothesis"]) > 0:
|
|
|
234 |
elif isinstance(ex["hypothesis"], str):
|
235 |
input1 = ex["hypothesis"]
|
236 |
|
237 |
+
# Get n-best hypotheses for other methods
|
238 |
+
n_best_hypotheses = ex.get("hypothesis", [])
|
|
|
|
|
|
|
|
|
239 |
|
240 |
+
# Process and evaluate all methods
|
|
|
|
|
|
|
|
|
|
|
241 |
|
242 |
+
# Method 1: No LM (1-best ASR output)
|
243 |
+
if input1 and isinstance(input1, str):
|
244 |
+
no_lm_hyp = preprocess_text(input1)
|
245 |
+
if no_lm_hyp:
|
246 |
+
wer_no_lm = calculate_simple_wer(reference, no_lm_hyp)
|
247 |
+
wer_values_no_lm.append(wer_no_lm)
|
248 |
|
249 |
+
# Method 2: LM ranking (best of n-best)
|
250 |
+
if n_best_hypotheses:
|
251 |
+
lm_best_hyp = get_best_hypothesis_lm(n_best_hypotheses)
|
252 |
+
if lm_best_hyp:
|
253 |
+
wer_lm = calculate_simple_wer(reference, lm_best_hyp)
|
254 |
+
wer_values_lm_ranking.append(wer_lm)
|
255 |
+
|
256 |
+
# Method 3: N-best correction (voting among n-best)
|
257 |
+
if n_best_hypotheses:
|
258 |
+
corrected_hyp = correct_hypotheses(n_best_hypotheses)
|
259 |
+
if corrected_hyp:
|
260 |
+
wer_corrected = calculate_simple_wer(reference, corrected_hyp)
|
261 |
+
wer_values_n_best_correction.append(wer_corrected)
|
262 |
|
263 |
+
# Count as valid if at least one method worked
|
264 |
+
if (wer_values_no_lm and i == len(wer_values_no_lm) - 1) or \
|
265 |
+
(wer_values_lm_ranking and i == len(wer_values_lm_ranking) - 1) or \
|
266 |
+
(wer_values_n_best_correction and i == len(wer_values_n_best_correction) - 1):
|
267 |
+
valid_count += 1
|
268 |
+
else:
|
269 |
+
skipped_count += 1
|
270 |
|
271 |
+
# Print debug info for a few examples
|
272 |
+
if i < 2:
|
273 |
+
print(f"\nExample {i} inspection:")
|
274 |
+
print(f" Reference: '{reference}'")
|
275 |
+
|
276 |
+
if input1 and isinstance(input1, str):
|
277 |
+
no_lm_hyp = preprocess_text(input1)
|
278 |
+
print(f" No LM (1-best): '{no_lm_hyp}'")
|
279 |
+
if no_lm_hyp:
|
280 |
+
wer = calculate_simple_wer(reference, no_lm_hyp)
|
281 |
+
print(f" No LM WER: {wer:.4f}")
|
282 |
+
|
283 |
+
if n_best_hypotheses:
|
284 |
+
print(f" N-best count: {len(n_best_hypotheses) if isinstance(n_best_hypotheses, list) else 'not a list'}")
|
285 |
+
lm_best_hyp = get_best_hypothesis_lm(n_best_hypotheses)
|
286 |
+
print(f" LM ranking best: '{lm_best_hyp}'")
|
287 |
+
if lm_best_hyp:
|
288 |
+
wer = calculate_simple_wer(reference, lm_best_hyp)
|
289 |
+
print(f" LM ranking WER: {wer:.4f}")
|
290 |
+
|
291 |
+
corrected_hyp = correct_hypotheses(n_best_hypotheses)
|
292 |
+
print(f" N-best correction: '{corrected_hyp}'")
|
293 |
+
if corrected_hyp:
|
294 |
+
wer = calculate_simple_wer(reference, corrected_hyp)
|
295 |
+
print(f" N-best correction WER: {wer:.4f}")
|
296 |
|
297 |
except Exception as ex_error:
|
298 |
print(f"Error processing example {i}: {str(ex_error)}")
|
299 |
skipped_count += 1
|
300 |
continue
|
301 |
|
302 |
+
# Calculate average WER for each method
|
303 |
print(f"\nProcessing summary: Valid pairs: {valid_count}, Skipped: {skipped_count}")
|
304 |
|
305 |
+
no_lm_wer = np.mean(wer_values_no_lm) if wer_values_no_lm else np.nan
|
306 |
+
lm_ranking_wer = np.mean(wer_values_lm_ranking) if wer_values_lm_ranking else np.nan
|
307 |
+
n_best_correction_wer = np.mean(wer_values_n_best_correction) if wer_values_n_best_correction else np.nan
|
308 |
+
|
309 |
+
print(f"Calculated WERs:")
|
310 |
+
print(f" No LM: {len(wer_values_no_lm)} pairs, avg WER: {no_lm_wer:.4f}")
|
311 |
+
print(f" LM Ranking: {len(wer_values_lm_ranking)} pairs, avg WER: {lm_ranking_wer:.4f}")
|
312 |
+
print(f" N-best Correction: {len(wer_values_n_best_correction)} pairs, avg WER: {n_best_correction_wer:.4f}")
|
313 |
|
314 |
+
return no_lm_wer, lm_ranking_wer, n_best_correction_wer
|
|
|
|
|
315 |
|
316 |
except Exception as e:
|
317 |
print(f"Error in calculate_wer: {str(e)}")
|
318 |
print(traceback.format_exc())
|
319 |
+
return np.nan, np.nan, np.nan
|
320 |
|
321 |
# Get WER metrics by source
|
322 |
def get_wer_metrics(dataset):
|
|
|
357 |
|
358 |
if count > 0:
|
359 |
print(f"\nCalculating WER for source {source} with {count} examples")
|
360 |
+
no_lm_wer, lm_ranking_wer, n_best_wer = calculate_wer_methods(examples)
|
361 |
else:
|
362 |
+
no_lm_wer, lm_ranking_wer, n_best_wer = np.nan, np.nan, np.nan
|
363 |
|
364 |
source_results[source] = {
|
365 |
"Count": count,
|
366 |
+
"No LM Baseline": no_lm_wer,
|
367 |
+
"N-best LM Ranking": lm_ranking_wer,
|
368 |
+
"N-best Correction": n_best_wer
|
369 |
}
|
370 |
except Exception as e:
|
371 |
print(f"Error processing source {source}: {str(e)}")
|
372 |
source_results[source] = {
|
373 |
"Count": 0,
|
374 |
+
"No LM Baseline": np.nan,
|
375 |
+
"N-best LM Ranking": np.nan,
|
376 |
+
"N-best Correction": np.nan
|
377 |
}
|
378 |
|
379 |
# Calculate overall metrics with a sample but excluding all_et05_real
|
|
|
386 |
# Sample for calculation
|
387 |
sample_size = min(500, total_count)
|
388 |
sample_dataset = filtered_dataset[:sample_size]
|
389 |
+
no_lm_wer, lm_ranking_wer, n_best_wer = calculate_wer_methods(sample_dataset)
|
390 |
|
391 |
source_results["OVERALL"] = {
|
392 |
"Count": total_count,
|
393 |
+
"No LM Baseline": no_lm_wer,
|
394 |
+
"N-best LM Ranking": lm_ranking_wer,
|
395 |
+
"N-best Correction": n_best_wer
|
396 |
}
|
397 |
except Exception as e:
|
398 |
print(f"Error calculating overall metrics: {str(e)}")
|
399 |
print(traceback.format_exc())
|
400 |
source_results["OVERALL"] = {
|
401 |
"Count": len(filtered_dataset),
|
402 |
+
"No LM Baseline": np.nan,
|
403 |
+
"N-best LM Ranking": np.nan,
|
404 |
+
"N-best Correction": np.nan
|
405 |
}
|
406 |
|
407 |
# Create a transposed DataFrame with metrics as rows and sources as columns
|
408 |
+
metrics = ["Count", "No LM Baseline", "N-best LM Ranking", "N-best Correction"]
|
409 |
result_df = pd.DataFrame(index=metrics, columns=["Metric"] + all_sources + ["OVERALL"])
|
410 |
|
411 |
# Add descriptive column
|
412 |
+
result_df["Metric"] = [
|
413 |
+
"Number of Examples",
|
414 |
+
"Word Error Rate (No LM)",
|
415 |
+
"Word Error Rate (N-best LM Ranking)",
|
416 |
+
"Word Error Rate (N-best Correction)"
|
417 |
+
]
|
418 |
|
419 |
for source in all_sources + ["OVERALL"]:
|
420 |
for metric in metrics:
|
|
|
436 |
# Use vectorized operations instead of apply
|
437 |
df = df.copy()
|
438 |
|
439 |
+
# Find the rows containing WER values
|
440 |
+
wer_row_indices = []
|
441 |
for idx in df.index:
|
442 |
if "WER" in idx or "Error Rate" in idx:
|
443 |
+
wer_row_indices.append(idx)
|
|
|
444 |
|
445 |
+
for wer_row_index in wer_row_indices:
|
446 |
# Convert to object type first to avoid warnings
|
447 |
df.loc[wer_row_index] = df.loc[wer_row_index].astype(object)
|
448 |
|
|
|
474 |
# Create the Gradio interface
|
475 |
with gr.Blocks(title="ASR Text Correction Test Leaderboard") as demo:
|
476 |
gr.Markdown("# ASR Text Correction Baseline WER Leaderboard (Test Data)")
|
477 |
+
gr.Markdown("Word Error Rate (WER) metrics for different speech sources with multiple correction approaches")
|
478 |
|
479 |
with gr.Row():
|
480 |
refresh_btn = gr.Button("Refresh Leaderboard")
|