[host]
Browse files- .DS_Store +0 -0
- app.py +99 -0
- leaderboard_results.csv +6 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load the leaderboard data
|
7 |
+
def load_data():
|
8 |
+
df = pd.read_csv("leaderboard_results.csv")
|
9 |
+
return df
|
10 |
+
|
11 |
+
# Create a bar chart visualization of the accuracy scores
|
12 |
+
def create_accuracy_chart(df):
|
13 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
14 |
+
|
15 |
+
# Sort by accuracy for better visualization
|
16 |
+
df_sorted = df.sort_values(by='Test Acc', ascending=False)
|
17 |
+
|
18 |
+
# Create bar chart
|
19 |
+
bars = ax.bar(df_sorted['Solution'], df_sorted['Test Acc'], color='skyblue')
|
20 |
+
|
21 |
+
# Highlight the best performer
|
22 |
+
bars[0].set_color('gold')
|
23 |
+
|
24 |
+
# Add labels and title
|
25 |
+
ax.set_xlabel('Solution')
|
26 |
+
ax.set_ylabel('Test Accuracy')
|
27 |
+
ax.set_title('Leaderboard Results by Accuracy')
|
28 |
+
|
29 |
+
# Rotate x-axis labels for better readability
|
30 |
+
plt.xticks(rotation=45, ha='right')
|
31 |
+
|
32 |
+
# Add text labels on bars
|
33 |
+
for bar in bars:
|
34 |
+
height = bar.get_height()
|
35 |
+
ax.text(bar.get_x() + bar.get_width()/2., height + 0.01,
|
36 |
+
f'{height:.5f}', ha='center', va='bottom')
|
37 |
+
|
38 |
+
plt.tight_layout()
|
39 |
+
return fig
|
40 |
+
|
41 |
+
# Display detailed information for a selected solution
|
42 |
+
def display_solution_details(solution_name):
|
43 |
+
df = load_data()
|
44 |
+
if solution_name:
|
45 |
+
solution_data = df[df['Solution'] == solution_name].iloc[0]
|
46 |
+
details = f"""
|
47 |
+
## {solution_data['Solution']} Details
|
48 |
+
|
49 |
+
- **Test Accuracy**: {solution_data['Test Acc']:.5f}
|
50 |
+
- **Institution**: {solution_data['Institution']}
|
51 |
+
- **Region**: {solution_data['Region']}
|
52 |
+
- **Paper**: {solution_data['Paper']}
|
53 |
+
- **Lead Author**: {solution_data['Lead Author']}
|
54 |
+
"""
|
55 |
+
return details
|
56 |
+
return "Please select a solution to see details."
|
57 |
+
|
58 |
+
# Main interface
|
59 |
+
def create_interface():
|
60 |
+
df = load_data()
|
61 |
+
|
62 |
+
with gr.Blocks(title="Emotion Recognition Leaderboard") as demo:
|
63 |
+
gr.Markdown("# Speech-based Emotion Recognition Leaderboard")
|
64 |
+
|
65 |
+
with gr.Row():
|
66 |
+
with gr.Column():
|
67 |
+
# Display the full leaderboard table
|
68 |
+
gr.DataFrame(
|
69 |
+
df.sort_values(by='Test Acc', ascending=False),
|
70 |
+
label="Leaderboard Results"
|
71 |
+
)
|
72 |
+
|
73 |
+
with gr.Column():
|
74 |
+
# Display the visualization
|
75 |
+
gr.Plot(create_accuracy_chart(df))
|
76 |
+
|
77 |
+
with gr.Row():
|
78 |
+
# Add dropdown for selecting a specific solution for more details
|
79 |
+
solution_dropdown = gr.Dropdown(
|
80 |
+
choices=df['Solution'].tolist(),
|
81 |
+
label="Select Solution for Details"
|
82 |
+
)
|
83 |
+
|
84 |
+
# Display area for solution details
|
85 |
+
solution_details = gr.Markdown()
|
86 |
+
|
87 |
+
# Update solution details when dropdown changes
|
88 |
+
solution_dropdown.change(
|
89 |
+
display_solution_details,
|
90 |
+
inputs=solution_dropdown,
|
91 |
+
outputs=solution_details
|
92 |
+
)
|
93 |
+
|
94 |
+
return demo
|
95 |
+
|
96 |
+
# Load data, create and launch the interface
|
97 |
+
if __name__ == "__main__":
|
98 |
+
demo = create_interface()
|
99 |
+
demo.launch()
|
leaderboard_results.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Test Acc,Solution,Institution,Region,Paper,Lead Author
|
2 |
+
0.75162,Mosaic,Florida International University,US,Improving Speech-based Emotion Recognition with Contextual Utterance Analysis and LLMs,Enshi Zhang
|
3 |
+
0.75059,UoE,University of Edinburgh,UK,Context and System Fusion in Post-ASR Emotion Recognition with Large Language Models,Pavel Stepachev and Pinzhen Chen
|
4 |
+
0.64522,SLAM,Academia Sinica,TW,"How Good is ChatGPT at Audiovisual Deepfake Detection: A Comparative Study of ChatGPT, AI Models and Human Perception","Speech, Language nad Music Processing (SLAM) Laboratory"
|
5 |
+
0.58809,TeamBlack,Columbia University,US,Post-ASR LLM-Based Speech Emotion Recognition: A fight between top LLMs,Sounak Ray
|
6 |
+
0.5518,GPT-3.5 Turbo,Baseline,Global,"Large Language Model Based Generative Error Correction: A Challenge and Baselines for Speech Recognition, Speaker Tagging, and Emotion Recognition",Official
|