huckiyang commited on
Commit
f2e5135
·
1 Parent(s): 3f998e4
Files changed (3) hide show
  1. .DS_Store +0 -0
  2. app.py +99 -0
  3. leaderboard_results.csv +6 -0
.DS_Store ADDED
Binary file (6.15 kB). View file
 
app.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import matplotlib.pyplot as plt
4
+ import numpy as np
5
+
6
+ # Load the leaderboard data
7
+ def load_data():
8
+ df = pd.read_csv("leaderboard_results.csv")
9
+ return df
10
+
11
+ # Create a bar chart visualization of the accuracy scores
12
+ def create_accuracy_chart(df):
13
+ fig, ax = plt.subplots(figsize=(10, 6))
14
+
15
+ # Sort by accuracy for better visualization
16
+ df_sorted = df.sort_values(by='Test Acc', ascending=False)
17
+
18
+ # Create bar chart
19
+ bars = ax.bar(df_sorted['Solution'], df_sorted['Test Acc'], color='skyblue')
20
+
21
+ # Highlight the best performer
22
+ bars[0].set_color('gold')
23
+
24
+ # Add labels and title
25
+ ax.set_xlabel('Solution')
26
+ ax.set_ylabel('Test Accuracy')
27
+ ax.set_title('Leaderboard Results by Accuracy')
28
+
29
+ # Rotate x-axis labels for better readability
30
+ plt.xticks(rotation=45, ha='right')
31
+
32
+ # Add text labels on bars
33
+ for bar in bars:
34
+ height = bar.get_height()
35
+ ax.text(bar.get_x() + bar.get_width()/2., height + 0.01,
36
+ f'{height:.5f}', ha='center', va='bottom')
37
+
38
+ plt.tight_layout()
39
+ return fig
40
+
41
+ # Display detailed information for a selected solution
42
+ def display_solution_details(solution_name):
43
+ df = load_data()
44
+ if solution_name:
45
+ solution_data = df[df['Solution'] == solution_name].iloc[0]
46
+ details = f"""
47
+ ## {solution_data['Solution']} Details
48
+
49
+ - **Test Accuracy**: {solution_data['Test Acc']:.5f}
50
+ - **Institution**: {solution_data['Institution']}
51
+ - **Region**: {solution_data['Region']}
52
+ - **Paper**: {solution_data['Paper']}
53
+ - **Lead Author**: {solution_data['Lead Author']}
54
+ """
55
+ return details
56
+ return "Please select a solution to see details."
57
+
58
+ # Main interface
59
+ def create_interface():
60
+ df = load_data()
61
+
62
+ with gr.Blocks(title="Emotion Recognition Leaderboard") as demo:
63
+ gr.Markdown("# Speech-based Emotion Recognition Leaderboard")
64
+
65
+ with gr.Row():
66
+ with gr.Column():
67
+ # Display the full leaderboard table
68
+ gr.DataFrame(
69
+ df.sort_values(by='Test Acc', ascending=False),
70
+ label="Leaderboard Results"
71
+ )
72
+
73
+ with gr.Column():
74
+ # Display the visualization
75
+ gr.Plot(create_accuracy_chart(df))
76
+
77
+ with gr.Row():
78
+ # Add dropdown for selecting a specific solution for more details
79
+ solution_dropdown = gr.Dropdown(
80
+ choices=df['Solution'].tolist(),
81
+ label="Select Solution for Details"
82
+ )
83
+
84
+ # Display area for solution details
85
+ solution_details = gr.Markdown()
86
+
87
+ # Update solution details when dropdown changes
88
+ solution_dropdown.change(
89
+ display_solution_details,
90
+ inputs=solution_dropdown,
91
+ outputs=solution_details
92
+ )
93
+
94
+ return demo
95
+
96
+ # Load data, create and launch the interface
97
+ if __name__ == "__main__":
98
+ demo = create_interface()
99
+ demo.launch()
leaderboard_results.csv ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ Test Acc,Solution,Institution,Region,Paper,Lead Author
2
+ 0.75162,Mosaic,Florida International University,US,Improving Speech-based Emotion Recognition with Contextual Utterance Analysis and LLMs,Enshi Zhang
3
+ 0.75059,UoE,University of Edinburgh,UK,Context and System Fusion in Post-ASR Emotion Recognition with Large Language Models,Pavel Stepachev and Pinzhen Chen
4
+ 0.64522,SLAM,Academia Sinica,TW,"How Good is ChatGPT at Audiovisual Deepfake Detection: A Comparative Study of ChatGPT, AI Models and Human Perception","Speech, Language nad Music Processing (SLAM) Laboratory"
5
+ 0.58809,TeamBlack,Columbia University,US,Post-ASR LLM-Based Speech Emotion Recognition: A fight between top LLMs,Sounak Ray
6
+ 0.5518,GPT-3.5 Turbo,Baseline,Global,"Large Language Model Based Generative Error Correction: A Challenge and Baselines for Speech Recognition, Speaker Tagging, and Emotion Recognition",Official