Spaces:
Build error
Build error
# import gradio as gr | |
# import numpy as np | |
# import torch | |
# from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor | |
# model_id = 'openai/whisper-large-v3' | |
# device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
# torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
# model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device) | |
# processor = AutoProcessor.from_pretrained(model_id) | |
# pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True) | |
# def transcribe_function(new_chunk, state): | |
# try: | |
# sr, y = new_chunk[0], new_chunk[1] | |
# except TypeError: | |
# print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}") | |
# return state, "", None | |
# y = y.astype(np.float32) / np.max(np.abs(y)) | |
# if state is not None: | |
# state = np.concatenate([state, y]) | |
# else: | |
# state = y | |
# result = pipe_asr({"array": state, "sampling_rate": sr}, return_timestamps=False) | |
# full_text = result.get("text", "") | |
# return state, full_text | |
# with gr.Blocks() as demo: | |
# gr.Markdown("# Voice to Text Transcription") | |
# state = gr.State(None) | |
# with gr.Row(): | |
# with gr.Column(): | |
# audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', label="Microphone Input") | |
# with gr.Column(): | |
# output_text = gr.Textbox(label="Transcription") | |
# audio_input.stream(transcribe_function, inputs=[audio_input, state], outputs=[state, output_text], api_name="SAMLOne_real_time") | |
# demo.launch(show_error=True) | |
# import gradio as gr | |
# import numpy as np | |
# import torch | |
# from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor | |
# model_id = 'openai/whisper-large-v3' | |
# device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
# torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
# model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device) | |
# processor = AutoProcessor.from_pretrained(model_id) | |
# pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=False) | |
# def transcribe_function(new_chunk, state): | |
# try: | |
# sr, y = new_chunk | |
# except TypeError: | |
# print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}") | |
# return state, "", None | |
# y = y.astype(np.float32) / np.max(np.abs(y)) | |
# if state is not None: | |
# state = np.concatenate([state, y]) | |
# else: | |
# state = y | |
# result = pipe_asr({"array": state, "sampling_rate": sr}, return_timestamps=False) | |
# full_text = result.get("text", "") | |
# return state, full_text | |
# with gr.Blocks() as demo: | |
# gr.Markdown("# Voice to Text Transcription") | |
# state = gr.State(None) | |
# with gr.Row(): | |
# with gr.Column(): | |
# audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', label="Microphone Input") | |
# with gr.Column(): | |
# output_text = gr.Textbox(label="Transcription") | |
# audio_input.stream(transcribe_function, inputs=[audio_input, state], outputs=[state, output_text], api_name="SAMLOne_real_time") | |
# demo.launch(show_error=True) | |
# import gradio as gr | |
# import numpy as np | |
# import torch | |
# from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor | |
# model_id = 'openai/whisper-large-v3' | |
# device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
# torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
# model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device) | |
# processor = AutoProcessor.from_pretrained(model_id) | |
# pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=False) | |
# def transcribe_function(new_chunk, state): | |
# try: | |
# sr, y = new_chunk | |
# except TypeError: | |
# print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}") | |
# return state, "", None | |
# y = y.astype(np.float32) / np.max(np.abs(y)) | |
# if state is not None: | |
# state = np.concatenate([state, y]) | |
# else: | |
# state = y | |
# result = pipe_asr({"array": state, "sampling_rate": sr}, return_timestamps=False) | |
# full_text = result.get("text", "") | |
# return state, full_text | |
# with gr.Blocks() as demo: | |
# gr.Markdown("# Voice to Text Transcription") | |
# state = gr.State(None) | |
# with gr.Row(): | |
# with gr.Column(): | |
# audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', label="Microphone Input") | |
# with gr.Column(): | |
# output_text = gr.Textbox(label="Transcription") | |
# audio_input.stream(transcribe_function, inputs=[audio_input, state], outputs=[state, output_text], api_name="SAMLOne_real_time") | |
# demo.launch(show_error=True) | |
import gradio as gr | |
import numpy as np | |
import torch | |
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor | |
model_id = 'openai/whisper-large-v3' | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device) | |
processor = AutoProcessor.from_pretrained(model_id) | |
pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=False) | |
def ensure_mono(y): | |
if len(y.shape) > 1 and y.shape[1] > 1: | |
y = np.mean(y, axis=1) | |
return y | |
def transcribe_function(new_chunk, state): | |
try: | |
sr, y = new_chunk | |
except TypeError: | |
print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}") | |
return state, "", None | |
y = ensure_mono(y) | |
y = y.astype(np.float32) / np.max(np.abs(y)) | |
if state is not None: | |
state = np.concatenate([state, y]) | |
else: | |
state = y | |
result = pipe_asr({"array": state, "sampling_rate": sr}, return_timestamps=False) | |
full_text = result.get("text", "") | |
return state, full_text | |
def upload_transcribe(file): | |
sr, y = file | |
y = ensure_mono(y) | |
y = y.astype(np.float32) / np.max(np.abs(y)) | |
result = pipe_asr({"array": y, "sampling_rate": sr}, return_timestamps=False) | |
return result.get("text", "") | |
with gr.Blocks() as demo: | |
gr.Markdown("# Voice to Text Transcription") | |
state = gr.State(None) | |
with gr.Row(): | |
with gr.Column(): | |
audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', label="Microphone Input") | |
audio_upload = gr.Audio(sources="upload", type='numpy', label="Upload Audio File") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Transcription") | |
upload_text = gr.Textbox(label="Uploaded Audio Transcription") | |
audio_input.stream(transcribe_function, inputs=[audio_input, state], outputs=[state, output_text], api_name="SAMLOne_real_time") | |
audio_upload.change(upload_transcribe, inputs=audio_upload, outputs=upload_text) | |
demo.launch(show_error=True) | |