Pijush2023 commited on
Commit
72de1df
·
verified ·
1 Parent(s): 0dff3d3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -8
app.py CHANGED
@@ -3,6 +3,7 @@ import numpy as np
3
  import torch
4
  from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
5
 
 
6
  model_id = 'openai/whisper-large-v3'
7
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
8
  torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
@@ -11,19 +12,24 @@ processor = AutoProcessor.from_pretrained(model_id)
11
 
12
  pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
13
 
14
- base_audio_drive = "/data/audio"
15
-
16
  def transcribe_function(audio):
17
- sr, y = audio[0], audio[1]
18
  y = y.astype(np.float32) / np.max(np.abs(y))
19
  result = pipe_asr({"array": y, "sampling_rate": sr}, return_timestamps=False)
20
  full_text = result.get("text", "")
21
  return full_text
22
 
23
- def gradio_transcribe(audio):
24
- sr, y = audio
25
- return transcribe_function((sr, y))
 
 
 
 
 
 
 
26
 
27
- iface = gr.Interface(fn=gradio_transcribe, inputs=gr.inputs.Audio(source="microphone", type="numpy"), outputs="text", title="Voice to Text Transcription", description="Transcribe your voice input to text using a pre-trained Whisper model.")
28
 
29
- iface.launch()
 
3
  import torch
4
  from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
5
 
6
+ # Initialize the model and processor
7
  model_id = 'openai/whisper-large-v3'
8
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
9
  torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
 
12
 
13
  pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
14
 
 
 
15
  def transcribe_function(audio):
16
+ sr, y = audio
17
  y = y.astype(np.float32) / np.max(np.abs(y))
18
  result = pipe_asr({"array": y, "sampling_rate": sr}, return_timestamps=False)
19
  full_text = result.get("text", "")
20
  return full_text
21
 
22
+ with gr.Blocks() as demo:
23
+ gr.Markdown("# Voice to Text Transcription\nTranscribe your voice input to text using a pre-trained Whisper model.")
24
+
25
+ with gr.Row():
26
+ with gr.Column():
27
+ audio_input = gr.Audio(source="microphone", type="numpy", label="Speak Here")
28
+ transcribe_button = gr.Button("Transcribe")
29
+
30
+ with gr.Column():
31
+ output_text = gr.Textbox(label="Transcription")
32
 
33
+ transcribe_button.click(transcribe_function, inputs=audio_input, outputs=output_text)
34
 
35
+ demo.launch()