Pijush2023 commited on
Commit
79a271f
·
verified ·
1 Parent(s): 9362658

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -9
app.py CHANGED
@@ -3,7 +3,6 @@ import numpy as np
3
  import torch
4
  from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
5
 
6
- # Initialize the model and processor
7
  model_id = 'openai/whisper-large-v3'
8
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
9
  torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
@@ -12,24 +11,37 @@ processor = AutoProcessor.from_pretrained(model_id)
12
 
13
  pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
14
 
15
- def transcribe_function(audio):
16
- sr, y = audio
 
 
 
 
 
17
  y = y.astype(np.float32) / np.max(np.abs(y))
18
- result = pipe_asr({"array": y, "sampling_rate": sr}, return_timestamps=False)
 
 
 
 
 
 
 
19
  full_text = result.get("text", "")
20
- return full_text
 
21
 
22
  with gr.Blocks() as demo:
23
  gr.Markdown("# Voice to Text Transcription\nTranscribe your voice input to text using a pre-trained Whisper model.")
24
 
 
 
25
  with gr.Row():
26
  with gr.Column():
27
- audio_input = gr.Audio(sources="microphone", type="numpy", label="Speak Here")
28
- transcribe_button = gr.Button("Transcribe")
29
-
30
  with gr.Column():
31
  output_text = gr.Textbox(label="Transcription")
32
 
33
- transcribe_button.click(transcribe_function, inputs=audio_input, outputs=output_text)
34
 
35
  demo.launch()
 
3
  import torch
4
  from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
5
 
 
6
  model_id = 'openai/whisper-large-v3'
7
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
8
  torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
 
11
 
12
  pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
13
 
14
+ def transcribe_function(new_chunk, state):
15
+ try:
16
+ sr, y = new_chunk[0], new_chunk[1]
17
+ except TypeError:
18
+ print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
19
+ return state, "", None
20
+
21
  y = y.astype(np.float32) / np.max(np.abs(y))
22
+
23
+ if state is not None:
24
+ state = np.concatenate([state, y])
25
+ else:
26
+ state = y
27
+
28
+ result = pipe_asr({"array": state, "sampling_rate": sr}, return_timestamps=False)
29
+
30
  full_text = result.get("text", "")
31
+
32
+ return state, full_text
33
 
34
  with gr.Blocks() as demo:
35
  gr.Markdown("# Voice to Text Transcription\nTranscribe your voice input to text using a pre-trained Whisper model.")
36
 
37
+ state = gr.State(None)
38
+
39
  with gr.Row():
40
  with gr.Column():
41
+ audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', label="Microphone Input")
 
 
42
  with gr.Column():
43
  output_text = gr.Textbox(label="Transcription")
44
 
45
+ audio_input.stream(transcribe_function, inputs=[audio_input, state], outputs=[state, output_text], api_name="SAMLOne_real_time")
46
 
47
  demo.launch()