Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
|
5 |
|
6 |
-
# Initialize the model and processor
|
7 |
model_id = 'openai/whisper-large-v3'
|
8 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
9 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
@@ -12,24 +11,37 @@ processor = AutoProcessor.from_pretrained(model_id)
|
|
12 |
|
13 |
pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
|
14 |
|
15 |
-
def transcribe_function(
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
17 |
y = y.astype(np.float32) / np.max(np.abs(y))
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
full_text = result.get("text", "")
|
20 |
-
|
|
|
21 |
|
22 |
with gr.Blocks() as demo:
|
23 |
gr.Markdown("# Voice to Text Transcription\nTranscribe your voice input to text using a pre-trained Whisper model.")
|
24 |
|
|
|
|
|
25 |
with gr.Row():
|
26 |
with gr.Column():
|
27 |
-
audio_input = gr.Audio(sources="microphone", type=
|
28 |
-
transcribe_button = gr.Button("Transcribe")
|
29 |
-
|
30 |
with gr.Column():
|
31 |
output_text = gr.Textbox(label="Transcription")
|
32 |
|
33 |
-
|
34 |
|
35 |
demo.launch()
|
|
|
3 |
import torch
|
4 |
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
|
5 |
|
|
|
6 |
model_id = 'openai/whisper-large-v3'
|
7 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
8 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
|
|
11 |
|
12 |
pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
|
13 |
|
14 |
+
def transcribe_function(new_chunk, state):
|
15 |
+
try:
|
16 |
+
sr, y = new_chunk[0], new_chunk[1]
|
17 |
+
except TypeError:
|
18 |
+
print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
|
19 |
+
return state, "", None
|
20 |
+
|
21 |
y = y.astype(np.float32) / np.max(np.abs(y))
|
22 |
+
|
23 |
+
if state is not None:
|
24 |
+
state = np.concatenate([state, y])
|
25 |
+
else:
|
26 |
+
state = y
|
27 |
+
|
28 |
+
result = pipe_asr({"array": state, "sampling_rate": sr}, return_timestamps=False)
|
29 |
+
|
30 |
full_text = result.get("text", "")
|
31 |
+
|
32 |
+
return state, full_text
|
33 |
|
34 |
with gr.Blocks() as demo:
|
35 |
gr.Markdown("# Voice to Text Transcription\nTranscribe your voice input to text using a pre-trained Whisper model.")
|
36 |
|
37 |
+
state = gr.State(None)
|
38 |
+
|
39 |
with gr.Row():
|
40 |
with gr.Column():
|
41 |
+
audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', label="Microphone Input")
|
|
|
|
|
42 |
with gr.Column():
|
43 |
output_text = gr.Textbox(label="Transcription")
|
44 |
|
45 |
+
audio_input.stream(transcribe_function, inputs=[audio_input, state], outputs=[state, output_text], api_name="SAMLOne_real_time")
|
46 |
|
47 |
demo.launch()
|