Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -46,6 +46,53 @@
|
|
46 |
|
47 |
# demo.launch(show_error=True)
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
import gradio as gr
|
50 |
import numpy as np
|
51 |
import torch
|
|
|
46 |
|
47 |
# demo.launch(show_error=True)
|
48 |
|
49 |
+
# import gradio as gr
|
50 |
+
# import numpy as np
|
51 |
+
# import torch
|
52 |
+
# from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
|
53 |
+
|
54 |
+
# model_id = 'openai/whisper-large-v3'
|
55 |
+
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
56 |
+
# torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
57 |
+
# model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
|
58 |
+
# processor = AutoProcessor.from_pretrained(model_id)
|
59 |
+
|
60 |
+
# pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=False)
|
61 |
+
|
62 |
+
# def transcribe_function(new_chunk, state):
|
63 |
+
# try:
|
64 |
+
# sr, y = new_chunk
|
65 |
+
# except TypeError:
|
66 |
+
# print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
|
67 |
+
# return state, "", None
|
68 |
+
|
69 |
+
# y = y.astype(np.float32) / np.max(np.abs(y))
|
70 |
+
|
71 |
+
# if state is not None:
|
72 |
+
# state = np.concatenate([state, y])
|
73 |
+
# else:
|
74 |
+
# state = y
|
75 |
+
|
76 |
+
# result = pipe_asr({"array": state, "sampling_rate": sr}, return_timestamps=False)
|
77 |
+
|
78 |
+
# full_text = result.get("text", "")
|
79 |
+
|
80 |
+
# return state, full_text
|
81 |
+
|
82 |
+
# with gr.Blocks() as demo:
|
83 |
+
# gr.Markdown("# Voice to Text Transcription")
|
84 |
+
|
85 |
+
# state = gr.State(None)
|
86 |
+
|
87 |
+
# with gr.Row():
|
88 |
+
# with gr.Column():
|
89 |
+
# audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', label="Microphone Input")
|
90 |
+
# with gr.Column():
|
91 |
+
# output_text = gr.Textbox(label="Transcription")
|
92 |
+
|
93 |
+
# audio_input.stream(transcribe_function, inputs=[audio_input, state], outputs=[state, output_text], api_name="SAMLOne_real_time")
|
94 |
+
|
95 |
+
# demo.launch(show_error=True)
|
96 |
import gradio as gr
|
97 |
import numpy as np
|
98 |
import torch
|