Pijush2023 commited on
Commit
faa126d
·
verified ·
1 Parent(s): 09ebb05

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -51
app.py CHANGED
@@ -1,52 +1,3 @@
1
- # import gradio as gr
2
- # import numpy as np
3
- # import torch
4
- # from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
5
-
6
- # model_id = 'openai/whisper-large-v3'
7
- # device = "cuda:0" if torch.cuda.is_available() else "cpu"
8
- # torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
9
- # model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
10
- # processor = AutoProcessor.from_pretrained(model_id)
11
-
12
- # pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
13
-
14
- # def transcribe_function(new_chunk, state):
15
- # try:
16
- # sr, y = new_chunk[0], new_chunk[1]
17
- # except TypeError:
18
- # print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
19
- # return state, "", None
20
-
21
- # y = y.astype(np.float32) / np.max(np.abs(y))
22
-
23
- # if state is not None:
24
- # state = np.concatenate([state, y])
25
- # else:
26
- # state = y
27
-
28
- # result = pipe_asr({"array": state, "sampling_rate": sr}, return_timestamps=False)
29
-
30
- # full_text = result.get("text", "")
31
-
32
- # return state, full_text
33
-
34
- # with gr.Blocks() as demo:
35
- # gr.Markdown("# Voice to Text Transcription")
36
-
37
- # state = gr.State(None)
38
-
39
- # with gr.Row():
40
- # with gr.Column():
41
- # audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', label="Microphone Input")
42
- # with gr.Column():
43
- # output_text = gr.Textbox(label="Transcription")
44
-
45
- # audio_input.stream(transcribe_function, inputs=[audio_input, state], outputs=[state, output_text], api_name="SAMLOne_real_time")
46
-
47
- # demo.launch(show_error=True)
48
-
49
-
50
  import gradio as gr
51
  import numpy as np
52
  import torch
@@ -62,8 +13,7 @@ pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=proce
62
 
63
  def transcribe_function(new_chunk, state):
64
  try:
65
- sr = new_chunk["sampling_rate"]
66
- y = np.array(new_chunk["array"])
67
  except TypeError:
68
  print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
69
  return state, "", None
@@ -96,3 +46,5 @@ with gr.Blocks() as demo:
96
 
97
  demo.launch(show_error=True)
98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import numpy as np
3
  import torch
 
13
 
14
  def transcribe_function(new_chunk, state):
15
  try:
16
+ sr, y = new_chunk[0], new_chunk[1]
 
17
  except TypeError:
18
  print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
19
  return state, "", None
 
46
 
47
  demo.launch(show_error=True)
48
 
49
+
50
+