Spaces:
Running
Running
File size: 4,537 Bytes
fac96fe 863081f f37a5b8 56885ea 86660db 56885ea 863081f f37a5b8 863081f f37a5b8 863081f f37a5b8 863081f f37a5b8 863081f f37a5b8 863081f 51b4629 863081f 51b4629 863081f 51b4629 863081f fac96fe 863081f 51b4629 863081f 51b4629 863081f f37a5b8 51b4629 863081f f37a5b8 863081f 51b4629 863081f 51b4629 863081f fac96fe 863081f 51b4629 863081f 51b4629 863081f f37a5b8 51b4629 863081f f37a5b8 863081f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import os
import gradio as gr
from openai import OpenAI
def predict(
message,
history,
system_prompt,
model,
api_url,
api_key,
max_tk,
temp,
top_p,
):
if not api_key:
return "Please set valid api keys in settings first."
# Format history with a given chat template
msgs = [{"role": "system", "content": system_prompt}]
for user, assistant in history:
msgs.append({"role": "user", "content": user})
msgs.append({"role": "system", "content": assistant})
msgs.append({"role": "user", "content": message})
try:
client = OpenAI(api_key=api_key, base_url=api_url)
response = client.chat.completions.create(
model=model,
messages=msgs,
max_tokens=max_tk,
temperature=temp,
top_p=top_p,
stream=False,
).to_dict()["choices"][0]["message"]["content"]
except Exception as e:
response = f"{e}"
return response
def deepseek(
message,
history,
model,
api_key,
system_prompt,
max_tk,
temp,
top_p,
):
response = predict(
message,
history,
system_prompt,
model,
"https://api.deepseek.com",
api_key,
max_tk,
temp,
top_p,
)
outputs = []
for new_token in response:
outputs.append(new_token)
yield "".join(outputs)
def kimi(
message,
history,
model,
api_key,
system_prompt,
max_tk,
temp,
top_p,
):
response = predict(
message,
history,
system_prompt,
model,
"https://api.moonshot.cn/v1",
api_key,
max_tk,
temp,
top_p,
)
outputs = []
for new_token in response:
outputs.append(new_token)
yield "".join(outputs)
if __name__ == "__main__":
with gr.Blocks() as demo: # Create Gradio interface
gr.Markdown("# LLM API Aggregation Deployment")
with gr.Tab("DeepSeek"):
with gr.Accordion(label="⚙️ Settings", open=False) as ds_acc:
ds_model = gr.Dropdown(
choices=["deepseek-chat", "deepseek-reasoner"],
value="deepseek-chat",
label="Select a model",
)
ds_key = gr.Textbox(
os.getenv("ds_api_key"),
type="password",
label="API key",
)
ds_sys = gr.Textbox(
"You are a useful assistant. first recognize user request and then reply carfuly and thinking",
label="System prompt",
)
ds_maxtk = gr.Slider(0, 32000, 10000, label="Max new tokens")
ds_temp = gr.Slider(0, 1, 0.3, label="Temperature")
ds_topp = gr.Slider(0, 1, 0.95, label="Top P sampling")
gr.ChatInterface(
deepseek,
additional_inputs=[
ds_model,
ds_key,
ds_sys,
ds_maxtk,
ds_temp,
ds_topp,
],
)
with gr.Tab("Kimi"):
with gr.Accordion(label="⚙️ Settings", open=False) as kimi_acc:
kimi_model = gr.Dropdown(
choices=["moonshot-v1-8k", "moonshot-v1-32k", "moonshot-v1-128k"],
value="moonshot-v1-32k",
label="Select a model",
)
kimi_key = gr.Textbox(
os.getenv("kimi_api_key"),
type="password",
label="API key",
)
kimi_sys = gr.Textbox(
"You are a useful assistant. first recognize user request and then reply carfuly and thinking",
label="System prompt",
)
kimi_maxtk = gr.Slider(0, 32000, 10000, label="Max new tokens")
kimi_temp = gr.Slider(0, 1, 0.3, label="Temperature")
kimi_topp = gr.Slider(0, 1, 0.95, label="Top P sampling")
gr.ChatInterface(
kimi,
additional_inputs=[
kimi_model,
kimi_key,
kimi_sys,
kimi_maxtk,
kimi_temp,
kimi_topp,
],
)
demo.queue().launch()
|