Spaces:
Running
Running
File size: 8,062 Bytes
503b2cf 3c75406 503b2cf fe0a0f7 503b2cf 7ea4f7d 503b2cf 3c75406 8afc538 503b2cf 3c75406 1436450 3c75406 503b2cf 3c75406 7ea4f7d 3c75406 7ea4f7d 3c75406 7ea4f7d 3c75406 7ea4f7d 3c75406 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import re
import os
import time
import torch
import shutil
import argparse
import warnings
import gradio as gr
from transformers import GPT2Config
from model import Patchilizer, TunesFormer
from convert import abc2xml, xml2, xml2img
from utils import (
PATCH_NUM_LAYERS,
PATCH_LENGTH,
CHAR_NUM_LAYERS,
PATCH_SIZE,
SHARE_WEIGHTS,
WEIGHTS_PATH,
TEMP_DIR,
TEYVAT,
DEVICE,
EN_US,
_L,
)
def get_args(parser: argparse.ArgumentParser):
parser.add_argument(
"-num_tunes",
type=int,
default=1,
help="the number of independently computed returned tunes",
)
parser.add_argument(
"-max_patch",
type=int,
default=128,
help="integer to define the maximum length in tokens of each tune",
)
parser.add_argument(
"-top_p",
type=float,
default=0.8,
help="float to define the tokens that are within the sample operation of text generation",
)
parser.add_argument(
"-top_k",
type=int,
default=8,
help="integer to define the tokens that are within the sample operation of text generation",
)
parser.add_argument(
"-temperature",
type=float,
default=1.2,
help="the temperature of the sampling operation",
)
parser.add_argument("-seed", type=int, default=None, help="seed for randomstate")
parser.add_argument(
"-show_control_code",
type=bool,
default=False,
help="whether to show control code",
)
return parser.parse_args()
def generate_music(args, region: str):
patchilizer = Patchilizer()
patch_config = GPT2Config(
num_hidden_layers=PATCH_NUM_LAYERS,
max_length=PATCH_LENGTH,
max_position_embeddings=PATCH_LENGTH,
vocab_size=1,
)
char_config = GPT2Config(
num_hidden_layers=CHAR_NUM_LAYERS,
max_length=PATCH_SIZE,
max_position_embeddings=PATCH_SIZE,
vocab_size=128,
)
model = TunesFormer(patch_config, char_config, share_weights=SHARE_WEIGHTS)
checkpoint = torch.load(WEIGHTS_PATH, map_location=torch.device("cpu"))
model.load_state_dict(checkpoint["model"])
model = model.to(DEVICE)
model.eval()
prompt = f"A:{region}\n"
tunes = ""
num_tunes = args.num_tunes
max_patch = args.max_patch
top_p = args.top_p
top_k = args.top_k
temperature = args.temperature
seed = args.seed
show_control_code = args.show_control_code
print(" Hyper parms ".center(60, "#"), "\n")
arg_dict: dict = vars(args)
for key in arg_dict.keys():
print(f"{key}: {str(arg_dict[key])}")
print("\n", " Output tunes ".center(60, "#"))
start_time = time.time()
for i in range(num_tunes):
title_artist = f"T:{region} Style Fragment\nC:Generated by AI\n"
tune = f"X:{str(i + 1)}\n{title_artist + prompt}"
lines = re.split(r"(\n)", tune)
tune = ""
skip = False
for line in lines:
if show_control_code or line[:2] not in ["S:", "B:", "E:"]:
if not skip:
print(line, end="")
tune += line
skip = False
else:
skip = True
input_patches = torch.tensor(
[patchilizer.encode(prompt, add_special_patches=True)[:-1]], device=DEVICE
)
if tune == "":
tokens = None
else:
prefix = patchilizer.decode(input_patches[0])
remaining_tokens = prompt[len(prefix) :]
tokens = torch.tensor(
[patchilizer.bos_token_id] + [ord(c) for c in remaining_tokens],
device=DEVICE,
)
while input_patches.shape[1] < max_patch:
predicted_patch, seed = model.generate(
input_patches,
tokens,
top_p=top_p,
top_k=top_k,
temperature=temperature,
seed=seed,
)
tokens = None
if predicted_patch[0] != patchilizer.eos_token_id:
next_bar = patchilizer.decode([predicted_patch])
if show_control_code or next_bar[:2] not in ["S:", "B:", "E:"]:
print(next_bar, end="")
tune += next_bar
if next_bar == "":
break
next_bar = remaining_tokens + next_bar
remaining_tokens = ""
predicted_patch = torch.tensor(
patchilizer.bar2patch(next_bar), device=DEVICE
).unsqueeze(0)
input_patches = torch.cat(
[input_patches, predicted_patch.unsqueeze(0)], dim=1
)
else:
break
tunes += f"{tune}\n\n"
print("\n")
print("Generation time: {:.2f} seconds".format(time.time() - start_time))
timestamp = time.strftime("%a_%d_%b_%Y_%H_%M_%S", time.localtime())
try:
xml = abc2xml(tunes, f"{TEMP_DIR}/[{region}]{timestamp}.musicxml")
midi = xml2(xml, "mid")
audio = xml2(xml, "wav")
pdf, jpg = xml2img(xml)
mxl = xml2(xml, "mxl")
return audio, midi, pdf, xml, mxl, tunes, jpg
except Exception as e:
print(f"Invalid abc generated: {e}, retrying...")
return generate_music(args, region)
def infer(p: float, k: int, t: float, region: str):
status = "Success"
audio = midi = pdf = xml = mxl = tunes = jpg = None
try:
if os.path.exists(TEMP_DIR):
shutil.rmtree(TEMP_DIR)
os.makedirs(TEMP_DIR)
parser = argparse.ArgumentParser()
args = get_args(parser)
args.top_p = p
args.top_k = k
args.temperature = t
audio, midi, pdf, xml, mxl, tunes, jpg = generate_music(
args, region if EN_US else TEYVAT[region]
)
except Exception as e:
status = f"{e}"
return status, audio, midi, pdf, xml, mxl, tunes, jpg
if __name__ == "__main__":
warnings.filterwarnings("ignore")
opts = list(TEYVAT.values()) if EN_US else list(TEYVAT.keys())
gr.Interface(
fn=infer,
inputs=[
gr.Slider(0.01, 1.0, 0.8, step=0.01, label=_L("Top-P 采样")),
gr.Slider(0, 80, 8, step=1, label=_L("Top-K 采样 (0 为关闭)")),
gr.Slider(0.01, 2.0, 1.2, step=0.01, label=_L("温度参数")),
gr.Dropdown(
choices=opts,
value=opts[0],
label=_L("地区风格"),
),
],
outputs=[
gr.Textbox(label=_L("状态栏"), show_copy_button=True),
gr.Audio(label=_L("音频"), type="filepath"),
gr.File(label=_L("下载 MIDI")),
gr.File(label=_L("下载 PDF 乐谱")),
gr.File(label=_L("下载 MusicXML")),
gr.File(label=_L("下载 MXL")),
gr.Textbox(label=_L("ABC 记谱"), show_copy_button=True),
gr.Image(label=_L("五线谱"), type="filepath", show_share_button=False),
],
flagging_mode="never",
title=_L("原神音乐生成"),
description=_L(
"""
欢迎使用此创空间, 此创空间基于 Tunesformer 开源项目制作,完全免费。当前模型还在调试中,计划在原神主线杀青后,所有国家地区角色全部开放后,二创音乐会齐全且样本均衡,届时重新微调模型并添加现实风格筛选辅助游戏各国家输出强化学习,以提升输出区分度与质量。注:崩铁方面数据工程正在运作中,未来也希望随主线杀青而基线化。<br>
数据来源: <a href="https://musescore.org">MuseScore</a> 标签来源: <a href="https://genshin-impact.fandom.com/wiki/Genshin_Impact_Wiki">Genshin Impact Wiki | Fandom</a> 模型基础: <a href="https://github.com/sander-wood/tunesformer">Tunesformer</a>
"""
),
).launch(ssr_mode=False)
|