File size: 7,776 Bytes
503b2cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe0a0f7
503b2cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ea4f7d
503b2cf
 
 
 
 
 
7ea4f7d
503b2cf
 
 
 
 
 
7ea4f7d
 
 
1436450
 
 
55bec7f
503b2cf
 
 
 
7ea4f7d
 
 
f8c391a
 
 
7ea4f7d
 
 
 
 
 
 
 
 
 
 
 
 
533246c
7ea4f7d
 
4ca7e3a
7ea4f7d
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import re
import os
import time
import torch
import shutil
import argparse
import warnings
import gradio as gr
from transformers import GPT2Config
from model import Patchilizer, TunesFormer
from convert import abc2xml, xml2, xml2img
from utils import (
    PATCH_NUM_LAYERS,
    PATCH_LENGTH,
    CHAR_NUM_LAYERS,
    PATCH_SIZE,
    SHARE_WEIGHTS,
    WEIGHTS_PATH,
    TEMP_DIR,
    TEYVAT,
    DEVICE,
)


def get_args(parser: argparse.ArgumentParser):
    parser.add_argument(
        "-num_tunes",
        type=int,
        default=1,
        help="the number of independently computed returned tunes",
    )
    parser.add_argument(
        "-max_patch",
        type=int,
        default=128,
        help="integer to define the maximum length in tokens of each tune",
    )
    parser.add_argument(
        "-top_p",
        type=float,
        default=0.8,
        help="float to define the tokens that are within the sample operation of text generation",
    )
    parser.add_argument(
        "-top_k",
        type=int,
        default=8,
        help="integer to define the tokens that are within the sample operation of text generation",
    )
    parser.add_argument(
        "-temperature",
        type=float,
        default=1.2,
        help="the temperature of the sampling operation",
    )
    parser.add_argument("-seed", type=int, default=None, help="seed for randomstate")
    parser.add_argument(
        "-show_control_code",
        type=bool,
        default=False,
        help="whether to show control code",
    )
    return parser.parse_args()


def generate_music(args, region: str):
    patchilizer = Patchilizer()
    patch_config = GPT2Config(
        num_hidden_layers=PATCH_NUM_LAYERS,
        max_length=PATCH_LENGTH,
        max_position_embeddings=PATCH_LENGTH,
        vocab_size=1,
    )
    char_config = GPT2Config(
        num_hidden_layers=CHAR_NUM_LAYERS,
        max_length=PATCH_SIZE,
        max_position_embeddings=PATCH_SIZE,
        vocab_size=128,
    )
    model = TunesFormer(patch_config, char_config, share_weights=SHARE_WEIGHTS)
    checkpoint = torch.load(WEIGHTS_PATH, map_location=torch.device("cpu"))
    model.load_state_dict(checkpoint["model"])
    model = model.to(DEVICE)
    model.eval()
    prompt = f"A:{region}\n"
    tunes = ""
    num_tunes = args.num_tunes
    max_patch = args.max_patch
    top_p = args.top_p
    top_k = args.top_k
    temperature = args.temperature
    seed = args.seed
    show_control_code = args.show_control_code
    print(" Hyper parms ".center(60, "#"), "\n")
    arg_dict: dict = vars(args)
    for key in arg_dict.keys():
        print(f"{key}: {str(arg_dict[key])}")

    print("\n", " Output tunes ".center(60, "#"))
    start_time = time.time()
    for i in range(num_tunes):
        title_artist = f"T:{region} Style Fragment\nC:Generated by AI\n"
        tune = f"X:{str(i + 1)}\n{title_artist + prompt}"
        lines = re.split(r"(\n)", tune)
        tune = ""
        skip = False
        for line in lines:
            if show_control_code or line[:2] not in ["S:", "B:", "E:"]:
                if not skip:
                    print(line, end="")
                    tune += line

                skip = False

            else:
                skip = True

        input_patches = torch.tensor(
            [patchilizer.encode(prompt, add_special_patches=True)[:-1]], device=DEVICE
        )

        if tune == "":
            tokens = None

        else:
            prefix = patchilizer.decode(input_patches[0])
            remaining_tokens = prompt[len(prefix) :]
            tokens = torch.tensor(
                [patchilizer.bos_token_id] + [ord(c) for c in remaining_tokens],
                device=DEVICE,
            )

        while input_patches.shape[1] < max_patch:
            predicted_patch, seed = model.generate(
                input_patches,
                tokens,
                top_p=top_p,
                top_k=top_k,
                temperature=temperature,
                seed=seed,
            )
            tokens = None
            if predicted_patch[0] != patchilizer.eos_token_id:
                next_bar = patchilizer.decode([predicted_patch])
                if show_control_code or next_bar[:2] not in ["S:", "B:", "E:"]:
                    print(next_bar, end="")
                    tune += next_bar

                if next_bar == "":
                    break

                next_bar = remaining_tokens + next_bar
                remaining_tokens = ""
                predicted_patch = torch.tensor(
                    patchilizer.bar2patch(next_bar), device=DEVICE
                ).unsqueeze(0)
                input_patches = torch.cat(
                    [input_patches, predicted_patch.unsqueeze(0)], dim=1
                )

            else:
                break

        tunes += f"{tune}\n\n"
        print("\n")

    print("Generation time: {:.2f} seconds".format(time.time() - start_time))
    timestamp = time.strftime("%a_%d_%b_%Y_%H_%M_%S", time.localtime())
    try:
        xml = abc2xml(tunes, f"{TEMP_DIR}/[{region}]{timestamp}.musicxml")
        midi = xml2(xml, "mid")
        audio = xml2(xml, "wav")
        pdf, jpg = xml2img(xml)
        mxl = xml2(xml, "mxl")
        return audio, midi, pdf, xml, mxl, tunes, jpg

    except Exception as e:
        print(f"Invalid abc generated: {e}, retrying...")
        return generate_music(args, region)


def infer(p, k, t, region: str):
    if os.path.exists(TEMP_DIR):
        shutil.rmtree(TEMP_DIR)

    os.makedirs(TEMP_DIR, exist_ok=True)
    parser = argparse.ArgumentParser()
    args = get_args(parser)
    args.top_p = p
    args.top_k = k
    args.temperature = t
    if region == "Natlan":
        region = "Teyvat"

    return generate_music(args, region)


if __name__ == "__main__":
    warnings.filterwarnings("ignore")
    gr.Interface(
        fn=infer,
        inputs=[
            gr.Slider(0.01, 1.0, 0.8, step=0.01, label="Top-P sample"),
            gr.Slider(0, 80, 8, step=1, label="Top-K sample (0=closed)"),
            gr.Slider(0.01, 2.0, 1.2, step=0.01, label="Temperature"),
            gr.Dropdown(
                choices=TEYVAT,
                value="Mondstadt",
                label="Region",
            ),
        ],
        outputs=[
            gr.Audio(label="Audio", type="filepath"),
            gr.File(label="Download MIDI"),
            gr.File(label="Download PDF"),
            gr.File(label="Download MusicXML"),
            gr.File(label="Download MXL"),
            gr.Textbox(label="ABC notation", show_copy_button=True),
            gr.Image(label="Staff", type="filepath", show_share_button=False),
        ],
        flagging_mode="never",
        title="Genshin Music Generation",
        description="""
    Welcome to this space based on the Tunesformer open source project, which is totally free! The current model is still in debugging, the plan is in the Genshin Impact after the main line is killed, all countries and regions after all the characters are open, the second creation of the concert will be complete and the sample is balanced, at that time to re-fine-tune the model and add the reality of the style of screening to assist in the game of each country's output to strengthen the learning in order to enhance the output differentiation and quality. Note: Data engineering on the Star Rail is in operation, and will hopefully be baselined in the future as well with the mainline kill.<br>
    Data source: <a href="https://musescore.org">MuseScore</a> Tags source: <a href="https://genshin-impact.fandom.com/wiki/Genshin_Impact_Wiki">Genshin Impact Wiki | Fandom</a> Model base: <a href="https://github.com/sander-wood/tunesformer">Tunesformer</a>
    """,
    ).launch()