Spaces:
Running
Running
File size: 7,421 Bytes
67a9b5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import numpy as np
def paired_intersection(boxes1, boxes2):
"""Compute paired intersection areas between boxes.
Args:
boxes1: a numpy array with shape [N, 4] holding N boxes
boxes2: a numpy array with shape [N, 4] holding N boxes
Returns:
a numpy array with shape [N,] representing itemwise intersection area
References:
`core.box_list_ops.matched_intersection` in Tensorflow object detection API
Notes:
can called as itemwise_intersection, matched_intersection, aligned_intersection
"""
max_x_mins = np.maximum(boxes1[:, 0], boxes2[:, 0])
max_y_mins = np.maximum(boxes1[:, 1], boxes2[:, 1])
min_x_maxs = np.minimum(boxes1[:, 2], boxes2[:, 2])
min_y_maxs = np.minimum(boxes1[:, 3], boxes2[:, 3])
intersect_widths = np.maximum(0, min_x_maxs - max_x_mins)
intersect_heights = np.maximum(0, min_y_maxs - max_y_mins)
return intersect_widths * intersect_heights
def pairwise_intersection(boxes1, boxes2):
"""Compute pairwise intersection areas between boxes.
Args:
boxes1: a numpy array with shape [N, 4] holding N boxes.
boxes2: a numpy array with shape [M, 4] holding M boxes.
Returns:
a numpy array with shape [N, M] representing pairwise intersection area.
References:
`core.box_list_ops.intersection` in Tensorflow object detection API
`utils.box_list_ops.intersection` in Tensorflow object detection API
"""
if boxes1.shape[0] * boxes2.shape[0] == 0:
return np.zeros((boxes1.shape[0], boxes2.shape[0]), dtype=boxes1.dtype)
swap = False
if boxes1.shape[0] > boxes2.shape[0]:
boxes1, boxes2 = boxes2, boxes1
swap = True
intersect_areas = np.empty((boxes1.shape[0], boxes2.shape[0]), dtype=boxes1.dtype)
for i in range(boxes1.shape[0]):
max_x_mins = np.maximum(boxes1[i, 0], boxes2[:, 0])
max_y_mins = np.maximum(boxes1[i, 1], boxes2[:, 1])
min_x_maxs = np.minimum(boxes1[i, 2], boxes2[:, 2])
min_y_maxs = np.minimum(boxes1[i, 3], boxes2[:, 3])
intersect_widths = np.maximum(0, min_x_maxs - max_x_mins)
intersect_heights = np.maximum(0, min_y_maxs - max_y_mins)
intersect_areas[i, :] = intersect_widths * intersect_heights
if swap:
intersect_areas = intersect_areas.T
return intersect_areas
def paired_overlap_ratio(boxes1, boxes2, ratio_type='iou'):
"""Compute paired overlap ratio between boxes.
Args:
boxes1: a numpy array with shape [N, 4] holding N boxes
boxes2: a numpy array with shape [N, 4] holding N boxes
ratio_type:
iou: Intersection-over-union (iou).
ioa: Intersection-over-area (ioa) between two boxes box1 and box2 is defined as
their intersection area over box2's area. Note that ioa is not symmetric,
that is, IOA(box1, box2) != IOA(box2, box1).
min: Compute the ratio as the area of intersection between box1 and box2,
divided by the minimum area of the two bounding boxes.
Returns:
a numpy array with shape [N,] representing itemwise overlap ratio.
References:
`core.box_list_ops.matched_iou` in Tensorflow object detection API
`structures.boxes.matched_boxlist_iou` in detectron2
`mmdet.core.bbox.bbox_overlaps`, see https://mmdetection.readthedocs.io/en/v2.17.0/api.html#mmdet.core.bbox.bbox_overlaps
"""
intersect_areas = paired_intersection(boxes1, boxes2)
areas1 = (boxes1[:, 2] - boxes1[:, 0]) * (boxes1[:, 3] - boxes1[:, 1])
areas2 = (boxes2[:, 2] - boxes2[:, 0]) * (boxes2[:, 3] - boxes2[:, 1])
if ratio_type in ['union', 'iou', 'giou']:
union_areas = areas1 - intersect_areas
union_areas += areas2
intersect_areas /= union_areas
elif ratio_type == 'min':
min_areas = np.minimum(areas1, areas2)
intersect_areas /= min_areas
elif ratio_type == 'ioa':
intersect_areas /= areas2
else:
raise ValueError('Unsupported ratio_type. Got {}'.format(ratio_type))
if ratio_type == 'giou':
min_xy_mins = np.minimum(boxes1[:, 0:2], boxes2[:, 0:2])
max_xy_mins = np.maximum(boxes1[:, 2:4], boxes2[:, 2:4])
# mebb = minimum enclosing bounding boxes
mebb_whs = np.maximum(0, max_xy_mins - min_xy_mins)
mebb_areas = mebb_whs[:, 0] * mebb_whs[:, 1]
union_areas -= mebb_areas
union_areas /= mebb_areas
intersect_areas += union_areas
return intersect_areas
def pairwise_overlap_ratio(boxes1, boxes2, ratio_type='iou'):
"""Compute pairwise overlap ratio between boxes.
Args:
boxes1: a numpy array with shape [N, 4] holding N boxes
boxes2: a numpy array with shape [M, 4] holding M boxes
ratio_type:
iou: Intersection-over-union (iou).
ioa: Intersection-over-area (ioa) between two boxes box1 and box2 is defined as
their intersection area over box2's area. Note that ioa is not symmetric,
that is, IOA(box1, box2) != IOA(box2, box1).
min: Compute the ratio as the area of intersection between box1 and box2,
divided by the minimum area of the two bounding boxes.
Returns:
a numpy array with shape [N, M] representing pairwise overlap ratio.
References:
`utils.np_box_ops.iou` in Tensorflow object detection API
`utils.np_box_ops.ioa` in Tensorflow object detection API
`utils.np_box_ops.giou` in Tensorflow object detection API
`mmdet.core.bbox.bbox_overlaps`, see https://mmdetection.readthedocs.io/en/v2.17.0/api.html#mmdet.core.bbox.bbox_overlaps
`torchvision.ops.box_iou`, see https://pytorch.org/vision/stable/ops.html#torchvision.ops.box_iou
`torchvision.ops.generalized_box_iou`, see https://pytorch.org/vision/stable/ops.html#torchvision.ops.generalized_box_iou
http://ww2.mathworks.cn/help/vision/ref/bboxoverlapratio.html
"""
intersect_areas = pairwise_intersection(boxes1, boxes2)
areas1 = (boxes1[:, 2] - boxes1[:, 0]) * (boxes1[:, 3] - boxes1[:, 1])
areas2 = (boxes2[:, 2] - boxes2[:, 0]) * (boxes2[:, 3] - boxes2[:, 1])
if ratio_type in ['union', 'iou', 'giou']:
union_areas = np.expand_dims(areas1, axis=1) - intersect_areas
union_areas += np.expand_dims(areas2, axis=0)
intersect_areas /= union_areas
elif ratio_type == 'min':
min_areas = np.minimum(np.expand_dims(areas1, axis=1), np.expand_dims(areas2, axis=0))
intersect_areas /= min_areas
elif ratio_type == 'ioa':
intersect_areas /= np.expand_dims(areas2, axis=0)
else:
raise ValueError('Unsupported ratio_type. Got {}'.format(ratio_type))
if ratio_type == 'giou':
min_xy_mins = np.minimum(boxes1[:, None, 0:2], boxes2[:, 0:2])
max_xy_mins = np.maximum(boxes1[:, None, 2:4], boxes2[:, 2:4])
# mebb = minimum enclosing bounding boxes
mebb_whs = np.maximum(0, max_xy_mins - min_xy_mins)
mebb_areas = mebb_whs[:, :, 0] * mebb_whs[:, :, 1]
union_areas -= mebb_areas
union_areas /= mebb_areas
intersect_areas += union_areas
return intersect_areas
|