Spaces:
Running
Running
File size: 4,560 Bytes
67a9b5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import numpy as np
from .boxes_utils import assert_and_normalize_shape
def flip_boxes(boxes, x_center=0, y_center=0, direction='h'):
"""
Args:
boxes: (N, 4+K)
x_center: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
y_center: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
direction: str
"""
assert direction in ['x', 'h', 'horizontal',
'y', 'v', 'vertical',
'o', 'b', 'both']
boxes = np.asarray(boxes, np.float32)
ret_boxes = boxes.copy()
x_center = np.asarray(x_center, np.float32)
y_center = np.asarray(y_center, np.float32)
x_center = assert_and_normalize_shape(x_center, boxes.shape[0])
y_center = assert_and_normalize_shape(y_center, boxes.shape[0])
if direction in ['o', 'b', 'both', 'x', 'h', 'horizontal']:
ret_boxes[:, 0] = 2 * x_center - boxes[:, 2]
ret_boxes[:, 2] = 2 * x_center - boxes[:, 0]
if direction in ['o', 'b', 'both', 'y', 'v', 'vertical']:
ret_boxes[:, 1] = 2 * y_center - boxes[:, 3]
ret_boxes[:, 3] = 2 * y_center - boxes[:, 1]
return ret_boxes
def fliplr_boxes(boxes, x_center=0, y_center=0):
"""
Args:
boxes: (N, 4+K)
x_center: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
y_center: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
"""
boxes = np.asarray(boxes, np.float32)
ret_boxes = boxes.copy()
x_center = np.asarray(x_center, np.float32)
y_center = np.asarray(y_center, np.float32)
x_center = assert_and_normalize_shape(x_center, boxes.shape[0])
y_center = assert_and_normalize_shape(y_center, boxes.shape[0])
ret_boxes[:, 0] = 2 * x_center - boxes[:, 2]
ret_boxes[:, 2] = 2 * x_center - boxes[:, 0]
return ret_boxes
def flipud_boxes(boxes, x_center=0, y_center=0):
"""
Args:
boxes: (N, 4+K)
x_center: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
y_center: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
"""
boxes = np.asarray(boxes, np.float32)
ret_boxes = boxes.copy()
x_center = np.asarray(x_center, np.float32)
y_center = np.asarray(y_center, np.float32)
x_center = assert_and_normalize_shape(x_center, boxes.shape[0])
y_center = assert_and_normalize_shape(y_center, boxes.shape[0])
ret_boxes[:, 1] = 2 * y_center - boxes[:, 3]
ret_boxes[:, 3] = 2 * y_center - boxes[:, 1]
return ret_boxes
def transpose_boxes(boxes, x_center=0, y_center=0):
"""
Args:
boxes: (N, 4+K)
x_center: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
y_center: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
"""
boxes = np.asarray(boxes, np.float32)
ret_boxes = boxes.copy()
x_center = np.asarray(x_center, np.float32)
y_center = np.asarray(y_center, np.float32)
x_center = assert_and_normalize_shape(x_center, boxes.shape[0])
y_center = assert_and_normalize_shape(y_center, boxes.shape[0])
shift = x_center - y_center
ret_boxes[:, 0] = boxes[:, 1] + shift
ret_boxes[:, 1] = boxes[:, 0] - shift
ret_boxes[:, 2] = boxes[:, 3] + shift
ret_boxes[:, 3] = boxes[:, 2] - shift
return ret_boxes
def flip_boxes_in_image(boxes, image_width, image_height, direction='h'):
"""
Args:
boxes: (N, 4+K)
image_width: int
image_width: int
direction: str
References:
`core.bbox.bbox_flip` in mmdetection
`datasets.pipelines.RandomFlip.bbox_flip` in mmdetection
"""
x_center = (image_width - 1) * 0.5
y_center = (image_height - 1) * 0.5
ret_boxes = flip_boxes(boxes, x_center, y_center, direction=direction)
return ret_boxes
def rot90_boxes_in_image(boxes, image_width, image_height, n=1):
"""Rotate boxes counter-clockwise by 90 degrees.
References:
np.rot90
cv2.rotate
tf.image.rot90
"""
n = n % 4
if n == 0:
ret_boxes = boxes.copy()
elif n == 1:
ret_boxes = transpose_boxes(boxes)
ret_boxes = flip_boxes_in_image(ret_boxes, image_width, image_height, 'v')
elif n == 2:
ret_boxes = flip_boxes_in_image(boxes, image_width, image_height, 'o')
else:
ret_boxes = transpose_boxes(boxes)
ret_boxes = flip_boxes_in_image(ret_boxes, image_width, image_height, 'h');
return ret_boxes
|