File size: 4,594 Bytes
67a9b5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import numpy as np
from .boxes_utils import assert_and_normalize_shape


def translate_boxes(boxes, x_shift=0, y_shift=0, copy=True):
    """translate boxes coordinates in x and y dimensions.
    
    Args:
        boxes: (N, 4+K)
        x_shift: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
            shift in x dimension
        y_shift: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
            shift in y dimension
        copy: bool
        
    References:
        `datasets.pipelines.RandomCrop` in mmdetection
    """
    boxes = np.array(boxes, dtype=np.float32, copy=copy)
    
    x_shift = np.asarray(x_shift, np.float32)
    y_shift = np.asarray(y_shift, np.float32)

    x_shift = assert_and_normalize_shape(x_shift, boxes.shape[0])
    y_shift = assert_and_normalize_shape(y_shift, boxes.shape[0])
    
    boxes[:, 0] += x_shift
    boxes[:, 1] += y_shift
    boxes[:, 2] += x_shift
    boxes[:, 3] += y_shift
    return boxes
    
    
def adjust_boxes(boxes, x_min_shift, y_min_shift, x_max_shift, y_max_shift, copy=True):
    """
    Args:
        boxes: (N, 4+K)
        x_min_shift: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
            shift (x_min, y_min) in x dimension
        y_min_shift: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
            shift (x_min, y_min) in y dimension
        x_max_shift: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
            shift (x_max, y_max) in x dimension
        y_max_shift: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
            shift (x_max, y_max) in y dimension
        copy: bool
    """
    boxes = np.array(boxes, dtype=np.float32, copy=copy)

    x_min_shift = np.asarray(x_min_shift, np.float32)
    y_min_shift = np.asarray(y_min_shift, np.float32)
    x_max_shift = np.asarray(x_max_shift, np.float32)
    y_max_shift = np.asarray(y_max_shift, np.float32)

    x_min_shift = assert_and_normalize_shape(x_min_shift, boxes.shape[0])
    y_min_shift = assert_and_normalize_shape(y_min_shift, boxes.shape[0])
    x_max_shift = assert_and_normalize_shape(x_max_shift, boxes.shape[0])
    y_max_shift = assert_and_normalize_shape(y_max_shift, boxes.shape[0])
    
    boxes[:, 0] += x_min_shift
    boxes[:, 1] += y_min_shift
    boxes[:, 2] += x_max_shift
    boxes[:, 3] += y_max_shift
    return boxes
    
    
def inflate_or_deflate_boxes(boxes, width_delta=0, height_delta=0, copy=True):
    """
    Args:
        boxes: (N, 4+K)
        width_delta: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
        height_delta: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
        copy: bool
    """
    boxes = np.array(boxes, dtype=np.float32, copy=copy)

    width_delta = np.asarray(width_delta, np.float32)
    height_delta = np.asarray(height_delta, np.float32)

    width_delta = assert_and_normalize_shape(width_delta, boxes.shape[0])
    height_delta = assert_and_normalize_shape(height_delta, boxes.shape[0])
    
    half_width_delta = width_delta * 0.5
    half_height_delta = height_delta * 0.5
    boxes[:, 0] -= half_width_delta
    boxes[:, 1] -= half_height_delta
    boxes[:, 2] += half_width_delta
    boxes[:, 3] += half_height_delta
    return boxes
    

def inflate_boxes_to_square(boxes, copy=True):
    """Inflate boxes to square
    Args:
        boxes: (N, 4+K)
        copy: bool
    """
    boxes = np.array(boxes, dtype=np.float32, copy=copy)

    widths = boxes[:, 2] - boxes[:, 0]
    heights = boxes[:, 3] - boxes[:, 1]
    max_side_lengths = np.maximum(widths, heights)
    
    width_deltas = np.subtract(max_side_lengths, widths, widths)
    height_deltas = np.subtract(max_side_lengths, heights, heights)
    width_deltas *= 0.5
    height_deltas *= 0.5
    boxes[:, 0] -= width_deltas
    boxes[:, 1] -= height_deltas
    boxes[:, 2] += width_deltas
    boxes[:, 3] += height_deltas
    return boxes
    

def deflate_boxes_to_square(boxes, copy=True):
    """Deflate boxes to square
    Args:
        boxes: (N, 4+K)
        copy: bool
    """
    boxes = np.array(boxes, dtype=np.float32, copy=copy)

    widths = boxes[:, 2] - boxes[:, 0]
    heights = boxes[:, 3] - boxes[:, 1]
    min_side_lengths = np.minimum(widths, heights)
    
    width_deltas = np.subtract(min_side_lengths, widths, widths)
    height_deltas = np.subtract(min_side_lengths, heights, heights)
    width_deltas *= 0.5
    height_deltas *= 0.5
    boxes[:, 0] -= width_deltas
    boxes[:, 1] -= height_deltas
    boxes[:, 2] += width_deltas
    boxes[:, 3] += height_deltas
    return boxes