Spaces:
Running
Running
File size: 11,967 Bytes
67a9b5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import os
import imghdr
import numbers
import warnings
from io import BytesIO
import cv2
import khandy
import numpy as np
from PIL import Image
def imread(file_or_buffer, flags=-1):
"""Improvement on cv2.imread, make it support filename including chinese character.
"""
try:
if isinstance(file_or_buffer, bytes):
return cv2.imdecode(np.frombuffer(file_or_buffer, dtype=np.uint8), flags)
else:
# support type: file or str or Path
return cv2.imdecode(np.fromfile(file_or_buffer, dtype=np.uint8), flags)
except Exception as e:
print(e)
return None
def imread_cv(file_or_buffer, flags=-1):
warnings.warn('khandy.imread_cv will be deprecated, use khandy.imread instead!')
return imread(file_or_buffer, flags)
def imwrite(filename, image, params=None):
"""Improvement on cv2.imwrite, make it support filename including chinese character.
"""
cv2.imencode(os.path.splitext(filename)[-1], image, params)[1].tofile(filename)
def imwrite_cv(filename, image, params=None):
warnings.warn('khandy.imwrite_cv will be deprecated, use khandy.imwrite instead!')
return imwrite(filename, image, params)
def imread_pil(file_or_buffer, to_mode=None):
"""Improvement on Image.open to avoid ResourceWarning.
"""
try:
if isinstance(file_or_buffer, bytes):
buffer = BytesIO()
buffer.write(file_or_buffer)
buffer.seek(0)
file_or_buffer = buffer
if hasattr(file_or_buffer, 'read'):
image = Image.open(file_or_buffer)
if to_mode is not None:
image = image.convert(to_mode)
else:
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(file_or_buffer, 'rb') as f:
image = Image.open(f)
# If convert outside with statement, will raise "seek of closed file" as
# https://github.com/microsoft/Swin-Transformer/issues/66
if to_mode is not None:
image = image.convert(to_mode)
return image
except Exception as e:
print(e)
return None
def imwrite_bytes(filename, image_bytes: bytes, update_extension: bool = True):
"""Write image bytes to file.
Args:
filename: str
filename which image_bytes is written into.
image_bytes: bytes
image content to be written.
update_extension: bool
whether update extension according to image_bytes or not.
the cost of update extension is smaller than update image format.
"""
extension = imghdr.what('', image_bytes)
file_extension = khandy.get_path_extension(filename)
# imghdr.what fails to determine image format sometimes!
# so when its return value is None, never update extension.
if extension is None:
image = cv2.imdecode(np.frombuffer(image_bytes, np.uint8), -1)
image_bytes = cv2.imencode(file_extension, image)[1]
elif (extension.lower() != file_extension.lower()[1:]):
if update_extension:
filename = khandy.replace_path_extension(filename, extension)
else:
image = cv2.imdecode(np.frombuffer(image_bytes, np.uint8), -1)
image_bytes = cv2.imencode(file_extension, image)[1]
with open(filename, "wb") as f:
f.write(image_bytes)
return filename
def rescale_image(image: np.ndarray, rescale_factor='auto', dst_dtype=np.float32):
"""Rescale image by rescale_factor.
Args:
img (ndarray): Image to be rescaled.
rescale_factor (str, int or float, *optional*, defaults to `'auto'`):
rescale the image by the specified scale factor. When is `'auto'`,
rescale the image to [0, 1).
dtype (np.dtype, *optional*, defaults to `np.float32`):
The dtype of the output image. Defaults to `np.float32`.
Returns:
ndarray: The rescaled image.
"""
if rescale_factor == 'auto':
if np.issubdtype(image.dtype, np.unsignedinteger):
rescale_factor = 1. / np.iinfo(image.dtype).max
else:
raise TypeError(f'Only support uint dtype ndarray when `rescale_factor` is `auto`, got {image.dtype}')
elif issubclass(rescale_factor, (int, float)):
pass
else:
raise TypeError('rescale_factor must be "auto", int or float')
image = image.astype(dst_dtype, copy=True)
image *= rescale_factor
image = image.astype(dst_dtype)
return image
def normalize_image_value(image: np.ndarray, mean, std, rescale_factor=None):
"""Normalize an image with mean and std, rescale optionally.
Args:
image (ndarray): Image to be normalized.
mean (int, float, Sequence[int], Sequence[float], ndarray): The mean to be used for normalize.
std (int, float, Sequence[int], Sequence[float], ndarray): The std to be used for normalize.
rescale_factor (None, 'auto', int or float, *optional*, defaults to `None`):
rescale the image by the specified scale factor. When is `'auto'`,
rescale the image to [0, 1); When is `None`, do not rescale.
Returns:
ndarray: The normalized image which dtype is np.float32.
"""
dst_dtype = np.float32
mean = np.array(mean, dtype=dst_dtype).flatten()
std = np.array(std, dtype=dst_dtype).flatten()
if rescale_factor == 'auto':
if np.issubdtype(image.dtype, np.unsignedinteger):
mean *= np.iinfo(image.dtype).max
std *= np.iinfo(image.dtype).max
else:
raise TypeError(f'Only support uint dtype ndarray when `rescale_factor` is `auto`, got {image.dtype}')
elif isinstance(rescale_factor, (int, float)):
mean *= rescale_factor
std *= rescale_factor
image = image.astype(dst_dtype, copy=True)
image -= mean
image /= std
return image
def normalize_image_dtype(image, keep_num_channels=False):
"""Normalize image dtype to uint8 (usually for visualization).
Args:
image : ndarray
Input image.
keep_num_channels : bool, optional
If this is set to True, the result is an array which has
the same shape as input image, otherwise the result is
an array whose channels number is 3.
Returns:
out: ndarray
Image whose dtype is np.uint8.
"""
assert (image.ndim == 3 and image.shape[-1] in [1, 3]) or (image.ndim == 2)
image = image.astype(np.float32)
image = khandy.minmax_normalize(image, axis=None, copy=False)
image = np.array(image * 255, dtype=np.uint8)
if not keep_num_channels:
if image.ndim == 2:
image = np.expand_dims(image, -1)
if image.shape[-1] == 1:
image = np.tile(image, (1,1,3))
return image
def normalize_image_channel(image, swap_rb=False):
"""Normalize image channel number and order to RGB or BGR.
Args:
image : ndarray
Input image.
swap_rb : bool, optional
whether swap red and blue channel or not
Returns:
out: ndarray
Image whose shape is (..., 3).
"""
if image.ndim == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
elif image.ndim == 3:
num_channels = image.shape[-1]
if num_channels == 1:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
elif num_channels == 3:
if swap_rb:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
elif num_channels == 4:
if swap_rb:
image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGB)
else:
image = cv2.cvtColor(image, cv2.COLOR_BGRA2BGR)
else:
raise ValueError(f'Unsupported image channel number, only support 1, 3 and 4, got {num_channels}!')
else:
raise ValueError(f'Unsupported image ndarray ndim, only support 2 and 3, got {image.ndim}!')
return image
def normalize_image_shape(image, swap_rb=False):
warnings.warn('khandy.normalize_image_shape will be deprecated, use khandy.normalize_image_channel instead!')
return normalize_image_channel(image, swap_rb)
def stack_image_list(image_list, dtype=np.float32):
"""Join a sequence of image along a new axis before first axis.
References:
`im_list_to_blob` in `py-faster-rcnn-master/lib/utils/blob.py`
"""
assert isinstance(image_list, (tuple, list))
max_dimension = np.array([image.ndim for image in image_list]).max()
assert max_dimension in [2, 3]
max_shape = np.array([image.shape[:2] for image in image_list]).max(axis=0)
num_channels = []
for image in image_list:
if image.ndim == 2:
num_channels.append(1)
else:
num_channels.append(image.shape[-1])
assert len(set(num_channels) - set([1])) in [0, 1]
max_num_channels = np.max(num_channels)
blob = np.empty((len(image_list), max_shape[0], max_shape[1], max_num_channels), dtype=dtype)
for k, image in enumerate(image_list):
blob[k, :image.shape[0], :image.shape[1], :] = np.atleast_3d(image).astype(dtype, copy=False)
if max_dimension == 2:
blob = np.squeeze(blob, axis=-1)
return blob
def is_numpy_image(image):
return isinstance(image, np.ndarray) and image.ndim in {2, 3}
def is_gray_image(image, tol=3):
assert is_numpy_image(image)
if image.ndim == 2:
return True
elif image.ndim == 3:
num_channels = image.shape[-1]
if num_channels == 1:
return True
elif num_channels == 3:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray3 = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR)
mae = np.mean(cv2.absdiff(image, gray3))
return mae <= tol
elif num_channels == 4:
rgb = cv2.cvtColor(image, cv2.COLOR_BGRA2BGR)
gray = cv2.cvtColor(rgb, cv2.COLOR_BGR2GRAY)
gray3 = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR)
mae = np.mean(cv2.absdiff(rgb, gray3))
return mae <= tol
else:
return False
else:
return False
def is_solid_color_image(image, tol=4):
assert is_numpy_image(image)
mean = np.array(cv2.mean(image)[:-1], dtype=np.float32)
if image.ndim == 2:
mae = np.mean(np.abs(image - mean[0]))
return mae <= tol
elif image.ndim == 3:
num_channels = image.shape[-1]
if num_channels == 1:
mae = np.mean(np.abs(image - mean[0]))
return mae <= tol
elif num_channels == 3:
mae = np.mean(np.abs(image - mean))
return mae <= tol
elif num_channels == 4:
mae = np.mean(np.abs(image[:,:,:-1] - mean))
return mae <= tol
else:
return False
else:
return False
def create_solid_color_image(image_width, image_height, color, dtype=None):
if isinstance(color, numbers.Real):
image = np.full((image_height, image_width), color, dtype=dtype)
elif isinstance(color, (tuple, list)):
if len(color) == 1:
image = np.full((image_height, image_width), color[0], dtype=dtype)
elif len(color) in (3, 4):
image = np.full((1, 1, len(color)), color, dtype=dtype)
image = cv2.copyMakeBorder(image, 0, image_height-1, 0, image_width-1,
cv2.BORDER_CONSTANT, value=color)
else:
color = np.asarray(color, dtype=dtype)
image = np.empty((image_height, image_width, len(color)), dtype=dtype)
image[:] = color
else:
raise TypeError(f'Invalid type {type(color)} for `color`.')
return image
|