Spaces:
Running
Running
File size: 20,006 Bytes
67a9b5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
import os
import copy
import json
import dataclasses
from dataclasses import dataclass, field
from collections import OrderedDict
from typing import Optional, List
import xml.etree.ElementTree as ET
import khandy
import lxml
import lxml.builder
import numpy as np
__all__ = ['DetectIrObject', 'DetectIrRecord', 'load_detect',
'save_detect', 'convert_detect', 'replace_detect_label',
'load_coco_class_names']
@dataclass
class DetectIrObject:
"""Intermediate Representation Format of Object
"""
label: str
x_min: float
y_min: float
x_max: float
y_max: float
@dataclass
class DetectIrRecord:
"""Intermediate Representation Format of Record
"""
filename: str
width: int
height: int
objects: List[DetectIrObject] = field(default_factory=list)
@dataclass
class PascalVocSource:
database: str = ''
annotation: str = ''
image: str = ''
@dataclass
class PascalVocSize:
height: int
width: int
depth: int
@dataclass
class PascalVocBndbox:
xmin: float
ymin: float
xmax: float
ymax: float
@dataclass
class PascalVocObject:
name: str
pose: str = 'Unspecified'
truncated: int = 0
difficult: int = 0
bndbox: Optional[PascalVocBndbox] = None
@dataclass
class PascalVocRecord:
folder: str = ''
filename: str = ''
path: str = ''
source: PascalVocSource = PascalVocSource()
size: Optional[PascalVocSize] = None
segmented: int = 0
objects: List[PascalVocObject] = field(default_factory=list)
class PascalVocHandler:
@staticmethod
def load(filename, **kwargs) -> PascalVocRecord:
pascal_voc_record = PascalVocRecord()
xml_tree = ET.parse(filename)
pascal_voc_record.folder = xml_tree.find('folder').text
pascal_voc_record.filename = xml_tree.find('filename').text
pascal_voc_record.path = xml_tree.find('path').text
pascal_voc_record.segmented = xml_tree.find('segmented').text
source_tag = xml_tree.find('source')
pascal_voc_record.source = PascalVocSource(
database=source_tag.find('database').text,
# annotation=source_tag.find('annotation').text,
# image=source_tag.find('image').text
)
size_tag = xml_tree.find('size')
pascal_voc_record.size = PascalVocSize(
width=int(size_tag.find('width').text),
height=int(size_tag.find('height').text),
depth=int(size_tag.find('depth').text)
)
object_tags = xml_tree.findall('object')
for index, object_tag in enumerate(object_tags):
bndbox_tag = object_tag.find('bndbox')
bndbox = PascalVocBndbox(
xmin=float(bndbox_tag.find('xmin').text) - 1,
ymin=float(bndbox_tag.find('ymin').text) - 1,
xmax=float(bndbox_tag.find('xmax').text) - 1,
ymax=float(bndbox_tag.find('ymax').text) - 1
)
pascal_voc_object = PascalVocObject(
name=object_tag.find('name').text,
pose=object_tag.find('pose').text,
truncated=object_tag.find('truncated').text,
difficult=object_tag.find('difficult').text,
bndbox=bndbox
)
pascal_voc_record.objects.append(pascal_voc_object)
return pascal_voc_record
@staticmethod
def save(filename, pascal_voc_record: PascalVocRecord):
maker = lxml.builder.ElementMaker()
xml = maker.annotation(
maker.folder(pascal_voc_record.folder),
maker.filename(pascal_voc_record.filename),
maker.path(pascal_voc_record.path),
maker.source(
maker.database(pascal_voc_record.source.database),
),
maker.size(
maker.width(str(pascal_voc_record.size.width)),
maker.height(str(pascal_voc_record.size.height)),
maker.depth(str(pascal_voc_record.size.depth)),
),
maker.segmented(str(pascal_voc_record.segmented)),
)
for pascal_voc_object in pascal_voc_record.objects:
object_tag = maker.object(
maker.name(pascal_voc_object.name),
maker.pose(pascal_voc_object.pose),
maker.truncated(str(pascal_voc_object.truncated)),
maker.difficult(str(pascal_voc_object.difficult)),
maker.bndbox(
maker.xmin(str(float(pascal_voc_object.bndbox.xmin))),
maker.ymin(str(float(pascal_voc_object.bndbox.ymin))),
maker.xmax(str(float(pascal_voc_object.bndbox.xmax))),
maker.ymax(str(float(pascal_voc_object.bndbox.ymax))),
),
)
xml.append(object_tag)
if not filename.endswith('.xml'):
filename = filename + '.xml'
with open(filename, 'wb') as f:
f.write(lxml.etree.tostring(
xml, pretty_print=True, encoding='utf-8'))
@staticmethod
def to_ir(pascal_voc_record: PascalVocRecord) -> DetectIrRecord:
ir_record = DetectIrRecord(
filename=pascal_voc_record.filename,
width=pascal_voc_record.size.width,
height=pascal_voc_record.size.height
)
for pascal_voc_object in pascal_voc_record.objects:
ir_object = DetectIrObject(
label=pascal_voc_object.name,
x_min=pascal_voc_object.bndbox.xmin,
y_min=pascal_voc_object.bndbox.ymin,
x_max=pascal_voc_object.bndbox.xmax,
y_max=pascal_voc_object.bndbox.ymax
)
ir_record.objects.append(ir_object)
return ir_record
@staticmethod
def from_ir(ir_record: DetectIrRecord) -> PascalVocRecord:
pascal_voc_record = PascalVocRecord(
filename=ir_record.filename,
size=PascalVocSize(
width=ir_record.width,
height=ir_record.height,
depth=3
)
)
for ir_object in ir_record.objects:
pascal_voc_object = PascalVocObject(
name=ir_object.label,
bndbox=PascalVocBndbox(
xmin=ir_object.x_min,
ymin=ir_object.y_min,
xmax=ir_object.x_max,
ymax=ir_object.y_max,
)
)
pascal_voc_record.objects.append(pascal_voc_object)
return pascal_voc_record
class _NumpyEncoder(json.JSONEncoder):
""" Special json encoder for numpy types """
def default(self, obj):
if isinstance(obj, (np.bool_,)):
return bool(obj)
elif isinstance(obj, (np.int_, np.intc, np.intp, np.int8,
np.int16, np.int32, np.int64, np.uint8,
np.uint16, np.uint32, np.uint64)):
return int(obj)
elif isinstance(obj, (np.float_, np.float16, np.float32,
np.float64)):
return float(obj)
elif isinstance(obj, (np.ndarray,)):
return obj.tolist()
return json.JSONEncoder.default(self, obj)
@dataclass
class LabelmeShape:
label: str
points: np.ndarray
shape_type: str
flags: dict = field(default_factory=dict)
group_id: Optional[int] = None
def __post_init__(self):
self.points = np.asarray(self.points)
@dataclass
class LabelmeRecord:
version: str = '4.5.6'
flags: dict = field(default_factory=dict)
shapes: List[LabelmeShape] = field(default_factory=list)
imagePath: Optional[str] = None
imageData: Optional[str] = None
imageHeight: Optional[int] = None
imageWidth: Optional[int] = None
def __post_init__(self):
for k, shape in enumerate(self.shapes):
self.shapes[k] = LabelmeShape(**shape)
class LabelmeHandler:
@staticmethod
def load(filename, **kwargs) -> LabelmeRecord:
json_content = khandy.load_json(filename)
return LabelmeRecord(**json_content)
@staticmethod
def save(filename, labelme_record: LabelmeRecord):
json_content = dataclasses.asdict(labelme_record)
khandy.save_json(filename, json_content, cls=_NumpyEncoder)
@staticmethod
def to_ir(labelme_record: LabelmeRecord) -> DetectIrRecord:
ir_record = DetectIrRecord(
filename=labelme_record.imagePath,
width=labelme_record.imageWidth,
height=labelme_record.imageHeight
)
for labelme_shape in labelme_record.shapes:
if labelme_shape.shape_type != 'rectangle':
continue
ir_object = DetectIrObject(
label=labelme_shape.label,
x_min=labelme_shape.points[0][0],
y_min=labelme_shape.points[0][1],
x_max=labelme_shape.points[1][0],
y_max=labelme_shape.points[1][1],
)
ir_record.objects.append(ir_object)
return ir_record
@staticmethod
def from_ir(ir_record: DetectIrRecord) -> LabelmeRecord:
labelme_record = LabelmeRecord(
imagePath=ir_record.filename,
imageWidth=ir_record.width,
imageHeight=ir_record.height
)
for ir_object in ir_record.objects:
labelme_shape = LabelmeShape(
label=ir_object.label,
shape_type='rectangle',
points=[[ir_object.x_min, ir_object.y_min],
[ir_object.x_max, ir_object.y_max]]
)
labelme_record.shapes.append(labelme_shape)
return labelme_record
@dataclass
class YoloObject:
label: str
x_center: float
y_center: float
width: float
height: float
@dataclass
class YoloRecord:
filename: Optional[str] = None
width: Optional[int] = None
height: Optional[int] = None
objects: List[YoloObject] = field(default_factory=list)
class YoloHandler:
@staticmethod
def load(filename, **kwargs) -> YoloRecord:
assert 'image_filename' in kwargs
assert 'width' in kwargs and 'height' in kwargs
records = khandy.load_list(filename)
yolo_record = YoloRecord(
filename=kwargs.get('image_filename'),
width=kwargs.get('width'),
height=kwargs.get('height'))
for record in records:
record_parts = record.split()
yolo_record.objects.append(YoloObject(
label=record_parts[0],
x_center=float(record_parts[1]),
y_center=float(record_parts[2]),
width=float(record_parts[3]),
height=float(record_parts[4]),
))
return yolo_record
@staticmethod
def save(filename, yolo_record: YoloRecord):
records = []
for object in yolo_record.objects:
records.append(
f'{object.label} {object.x_center} {object.y_center} {object.width} {object.height}')
if not filename.endswith('.txt'):
filename = filename + '.txt'
khandy.save_list(filename, records)
@staticmethod
def to_ir(yolo_record: YoloRecord) -> DetectIrRecord:
ir_record = DetectIrRecord(
filename=yolo_record.filename,
width=yolo_record.width,
height=yolo_record.height
)
for yolo_object in yolo_record.objects:
x_min = (yolo_object.x_center - 0.5 *
yolo_object.width) * yolo_record.width
y_min = (yolo_object.y_center - 0.5 *
yolo_object.height) * yolo_record.height
x_max = (yolo_object.x_center + 0.5 *
yolo_object.width) * yolo_record.width
y_max = (yolo_object.y_center + 0.5 *
yolo_object.height) * yolo_record.height
ir_object = DetectIrObject(
label=yolo_object.label,
x_min=x_min,
y_min=y_min,
x_max=x_max,
y_max=y_max
)
ir_record.objects.append(ir_object)
return ir_record
@staticmethod
def from_ir(ir_record: DetectIrRecord) -> YoloRecord:
yolo_record = YoloRecord(
filename=ir_record.filename,
width=ir_record.width,
height=ir_record.height
)
for ir_object in ir_record.objects:
x_center = (ir_object.x_max + ir_object.x_min) / \
(2 * ir_record.width)
y_center = (ir_object.y_max + ir_object.y_min) / \
(2 * ir_record.height)
width = abs(ir_object.x_max - ir_object.x_min) / ir_record.width
height = abs(ir_object.y_max - ir_object.y_min) / ir_record.height
yolo_object = YoloObject(
label=ir_object.label,
x_center=x_center,
y_center=y_center,
width=width,
height=height,
)
yolo_record.objects.append(yolo_object)
return yolo_record
@dataclass
class CocoObject:
label: str
x_min: float
y_min: float
width: float
height: float
@dataclass
class CocoRecord:
filename: str
width: int
height: int
objects: List[CocoObject] = field(default_factory=list)
class CocoHandler:
@staticmethod
def load(filename, **kwargs) -> List[CocoRecord]:
json_data = khandy.load_json(filename)
images = json_data['images']
annotations = json_data['annotations']
categories = json_data['categories']
label_map = {}
for cat_item in categories:
label_map[cat_item['id']] = cat_item['name']
coco_records = OrderedDict()
for image_item in images:
coco_records[image_item['id']] = CocoRecord(
filename=image_item['file_name'],
width=image_item['width'],
height=image_item['height'],
objects=[])
for annotation_item in annotations:
coco_object = CocoObject(
label=label_map[annotation_item['category_id']],
x_min=annotation_item['bbox'][0],
y_min=annotation_item['bbox'][1],
width=annotation_item['bbox'][2],
height=annotation_item['bbox'][3])
coco_records[annotation_item['image_id']
].objects.append(coco_object)
return list(coco_records.values())
@staticmethod
def to_ir(coco_record: CocoRecord) -> DetectIrRecord:
ir_record = DetectIrRecord(
filename=coco_record.filename,
width=coco_record.width,
height=coco_record.height,
)
for coco_object in coco_record.objects:
ir_object = DetectIrObject(
label=coco_object.label,
x_min=coco_object.x_min,
y_min=coco_object.y_min,
x_max=coco_object.x_min + coco_object.width,
y_max=coco_object.y_min + coco_object.height
)
ir_record.objects.append(ir_object)
return ir_record
@staticmethod
def from_ir(ir_record: DetectIrRecord) -> CocoRecord:
coco_record = CocoRecord(
filename=ir_record.filename,
width=ir_record.width,
height=ir_record.height
)
for ir_object in ir_record.objects:
coco_object = CocoObject(
label=ir_object.label,
x_min=ir_object.x_min,
y_min=ir_object.y_min,
width=ir_object.x_max - ir_object.x_min,
height=ir_object.y_max - ir_object.y_min
)
coco_record.objects.append(coco_object)
return coco_record
def load_detect(filename, fmt, **kwargs) -> DetectIrRecord:
if fmt == 'labelme':
labelme_record = LabelmeHandler.load(filename, **kwargs)
ir_record = LabelmeHandler.to_ir(labelme_record)
elif fmt == 'yolo':
yolo_record = YoloHandler.load(filename, **kwargs)
ir_record = YoloHandler.to_ir(yolo_record)
elif fmt in ('voc', 'pascal', 'pascal_voc'):
pascal_voc_record = PascalVocHandler.load(filename, **kwargs)
ir_record = PascalVocHandler.to_ir(pascal_voc_record)
elif fmt == 'coco':
coco_records = CocoHandler.load(filename, **kwargs)
ir_record = [CocoHandler.to_ir(coco_record)
for coco_record in coco_records]
else:
raise ValueError(f"Unsupported detect label fmt. Got {fmt}")
return ir_record
def save_detect(filename, ir_record: DetectIrRecord, out_fmt):
os.makedirs(os.path.dirname(os.path.abspath(filename)), exist_ok=True)
if out_fmt == 'labelme':
labelme_record = LabelmeHandler.from_ir(ir_record)
LabelmeHandler.save(filename, labelme_record)
elif out_fmt == 'yolo':
yolo_record = YoloHandler.from_ir(ir_record)
YoloHandler.save(filename, yolo_record)
elif out_fmt in ('voc', 'pascal', 'pascal_voc'):
pascal_voc_record = PascalVocHandler.from_ir(ir_record)
PascalVocHandler.save(filename, pascal_voc_record)
elif out_fmt == 'coco':
raise ValueError("Unsupported for `coco` now!")
else:
raise ValueError(f"Unsupported detect label fmt. Got {out_fmt}")
def _get_format(record):
if isinstance(record, LabelmeRecord):
return ('labelme',)
elif isinstance(record, YoloRecord):
return ('yolo',)
elif isinstance(record, PascalVocRecord):
return ('voc', 'pascal', 'pascal_voc')
elif isinstance(record, CocoRecord):
return ('coco',)
elif isinstance(record, DetectIrRecord):
return ('ir', 'detect_ir')
else:
return ()
def convert_detect(record, out_fmt):
allowed_fmts = ('labelme', 'yolo', 'voc', 'coco',
'pascal', 'pascal_voc', 'ir', 'detect_ir')
if out_fmt not in allowed_fmts:
raise ValueError(
"Unsupported label format conversions for given out_fmt")
if out_fmt in _get_format(record):
return record
if isinstance(record, LabelmeRecord):
ir_record = LabelmeHandler.to_ir(record)
elif isinstance(record, YoloRecord):
ir_record = YoloHandler.to_ir(record)
elif isinstance(record, PascalVocRecord):
ir_record = PascalVocHandler.to_ir(record)
elif isinstance(record, CocoRecord):
ir_record = CocoHandler.to_ir(record)
elif isinstance(record, DetectIrRecord):
ir_record = record
else:
raise TypeError('Unsupported type for record')
if out_fmt in ('ir', 'detect_ir'):
dst_record = ir_record
elif out_fmt == 'labelme':
dst_record = LabelmeHandler.from_ir(ir_record)
elif out_fmt == 'yolo':
dst_record = YoloHandler.from_ir(ir_record)
elif out_fmt in ('voc', 'pascal', 'pascal_voc'):
dst_record = PascalVocHandler.from_ir(ir_record)
elif out_fmt == 'coco':
dst_record = CocoHandler.from_ir(ir_record)
return dst_record
def replace_detect_label(record: DetectIrRecord, label_map, ignore=True):
dst_record = copy.deepcopy(record)
dst_objects = []
for ir_object in dst_record.objects:
if not ignore:
if ir_object.label in label_map:
ir_object.label = label_map[ir_object.label]
dst_objects.append(ir_object)
else:
if ir_object.label in label_map:
ir_object.label = label_map[ir_object.label]
dst_objects.append(ir_object)
dst_record.objects = dst_objects
return dst_record
def load_coco_class_names(filename):
json_data = khandy.load_json(filename)
categories = json_data['categories']
return [cat_item['name'] for cat_item in categories]
|