Spaces:
Running
Running
import numpy as np | |
from .boxes_utils import assert_and_normalize_shape | |
def scale_boxes(boxes, x_scale=1, y_scale=1, x_center=0, y_center=0, copy=True): | |
"""Scale boxes coordinates in x and y dimensions. | |
Args: | |
boxes: (N, 4+K) | |
x_scale: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1) | |
scale factor in x dimension | |
y_scale: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1) | |
scale factor in y dimension | |
x_center: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1) | |
y_center: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1) | |
References: | |
`core.box_list_ops.scale` in TensorFlow object detection API | |
`utils.box_list_ops.scale` in TensorFlow object detection API | |
`datasets.pipelines.Resize._resize_bboxes` in mmdetection | |
`core.anchor.guided_anchor_target.calc_region` in mmdetection where comments may be misleading! | |
`layers.mask_ops.scale_boxes` in detectron2 | |
`mmcv.bbox_scaling` | |
""" | |
boxes = np.array(boxes, dtype=np.float32, copy=copy) | |
x_scale = np.asarray(x_scale, np.float32) | |
y_scale = np.asarray(y_scale, np.float32) | |
x_scale = assert_and_normalize_shape(x_scale, boxes.shape[0]) | |
y_scale = assert_and_normalize_shape(y_scale, boxes.shape[0]) | |
x_center = np.asarray(x_center, np.float32) | |
y_center = np.asarray(y_center, np.float32) | |
x_center = assert_and_normalize_shape(x_center, boxes.shape[0]) | |
y_center = assert_and_normalize_shape(y_center, boxes.shape[0]) | |
x_shift = 1 - x_scale | |
y_shift = 1 - y_scale | |
x_shift *= x_center | |
y_shift *= y_center | |
boxes[:, 0] *= x_scale | |
boxes[:, 1] *= y_scale | |
boxes[:, 2] *= x_scale | |
boxes[:, 3] *= y_scale | |
boxes[:, 0] += x_shift | |
boxes[:, 1] += y_shift | |
boxes[:, 2] += x_shift | |
boxes[:, 3] += y_shift | |
return boxes | |
def scale_boxes_wrt_centers(boxes, x_scale=1, y_scale=1, copy=True): | |
""" | |
Args: | |
boxes: (N, 4+K) | |
x_scale: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1) | |
scale factor in x dimension | |
y_scale: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1) | |
scale factor in y dimension | |
References: | |
`core.anchor.guided_anchor_target.calc_region` in mmdetection where comments may be misleading! | |
`layers.mask_ops.scale_boxes` in detectron2 | |
`mmcv.bbox_scaling` | |
""" | |
boxes = np.array(boxes, dtype=np.float32, copy=copy) | |
x_scale = np.asarray(x_scale, np.float32) | |
y_scale = np.asarray(y_scale, np.float32) | |
x_scale = assert_and_normalize_shape(x_scale, boxes.shape[0]) | |
y_scale = assert_and_normalize_shape(y_scale, boxes.shape[0]) | |
x_factor = (x_scale - 1) * 0.5 | |
y_factor = (y_scale - 1) * 0.5 | |
x_deltas = boxes[:, 2] - boxes[:, 0] | |
y_deltas = boxes[:, 3] - boxes[:, 1] | |
x_deltas *= x_factor | |
y_deltas *= y_factor | |
boxes[:, 0] -= x_deltas | |
boxes[:, 1] -= y_deltas | |
boxes[:, 2] += x_deltas | |
boxes[:, 3] += y_deltas | |
return boxes | |