insecta / khandy /image /crop_or_pad.py
admin
sync
67a9b5d
import numbers
import warnings
import khandy
import numpy as np
def crop(image, x_min, y_min, x_max, y_max, border_value=0):
"""Crop the given image at specified rectangular area.
See Also:
translate_image
References:
PIL.Image.crop
tf.image.resize_image_with_crop_or_pad
"""
assert khandy.is_numpy_image(image)
assert isinstance(x_min, numbers.Integral) and isinstance(y_min, numbers.Integral)
assert isinstance(x_max, numbers.Integral) and isinstance(y_max, numbers.Integral)
assert (x_min <= x_max) and (y_min <= y_max)
src_height, src_width = image.shape[:2]
dst_height, dst_width = y_max - y_min + 1, x_max - x_min + 1
channels = 1 if image.ndim == 2 else image.shape[2]
if isinstance(border_value, (tuple, list)):
assert len(border_value) == channels, \
'Expected the num of elements in tuple equals the channels ' \
'of input image. Found {} vs {}'.format(
len(border_value), channels)
else:
border_value = (border_value,) * channels
dst_image = khandy.create_solid_color_image(
dst_width, dst_height, border_value, dtype=image.dtype)
src_x_begin = max(x_min, 0)
src_x_end = min(x_max + 1, src_width)
dst_x_begin = src_x_begin - x_min
dst_x_end = src_x_end - x_min
src_y_begin = max(y_min, 0)
src_y_end = min(y_max + 1, src_height)
dst_y_begin = src_y_begin - y_min
dst_y_end = src_y_end - y_min
if (src_x_begin >= src_x_end) or (src_y_begin >= src_y_end):
return dst_image
dst_image[dst_y_begin: dst_y_end, dst_x_begin: dst_x_end, ...] = \
image[src_y_begin: src_y_end, src_x_begin: src_x_end, ...]
return dst_image
def crop_or_pad(image, x_min, y_min, x_max, y_max, border_value=0):
warnings.warn('crop_or_pad will be deprecated, use crop instead!')
return crop(image, x_min, y_min, x_max, y_max, border_value)
def crop_coords(boxes, image_width, image_height):
"""
References:
`mmcv.impad`
`pad` in https://github.com/kpzhang93/MTCNN_face_detection_alignment
`MtcnnDetector.pad` in https://github.com/AITTSMD/MTCNN-Tensorflow
"""
x_mins = boxes[:, 0]
y_mins = boxes[:, 1]
x_maxs = boxes[:, 2]
y_maxs = boxes[:, 3]
dst_widths = x_maxs - x_mins + 1
dst_heights = y_maxs - y_mins + 1
src_x_begin = np.maximum(x_mins, 0)
src_x_end = np.minimum(x_maxs + 1, image_width)
dst_x_begin = src_x_begin - x_mins
dst_x_end = src_x_end - x_mins
src_y_begin = np.maximum(y_mins, 0)
src_y_end = np.minimum(y_maxs + 1, image_height)
dst_y_begin = src_y_begin - y_mins
dst_y_end = src_y_end - y_mins
coords = np.stack([dst_y_begin, dst_y_end, dst_x_begin, dst_x_end,
src_y_begin, src_y_end, src_x_begin, src_x_end,
dst_heights, dst_widths], axis=0)
return coords
def crop_or_pad_coords(boxes, image_width, image_height):
warnings.warn('crop_or_pad_coords will be deprecated, use crop_coords instead!')
return crop_coords(boxes, image_width, image_height)
def center_crop(image, dst_width, dst_height, strict=True):
"""
strict:
when True, raise error if src size is less than dst size.
when False, remain unchanged if src size is less than dst size, otherwise center crop.
"""
assert khandy.is_numpy_image(image)
assert isinstance(dst_width, numbers.Integral) and isinstance(dst_height, numbers.Integral)
src_height, src_width = image.shape[:2]
if strict:
assert (src_height >= dst_height) and (src_width >= dst_width)
crop_top = max((src_height - dst_height) // 2, 0)
crop_left = max((src_width - dst_width) // 2, 0)
cropped = image[crop_top: dst_height + crop_top,
crop_left: dst_width + crop_left, ...]
return cropped
def center_pad(image, dst_width, dst_height, strict=True):
"""
strict:
when True, raise error if src size is greater than dst size.
when False, remain unchanged if src size is greater than dst size, otherwise center pad.
"""
assert khandy.is_numpy_image(image)
assert isinstance(dst_width, numbers.Integral) and isinstance(dst_height, numbers.Integral)
src_height, src_width = image.shape[:2]
if strict:
assert (src_height <= dst_height) and (src_width <= dst_width)
padding_x = max(dst_width - src_width, 0)
padding_y = max(dst_height - src_height, 0)
padding_top = padding_y // 2
padding_left = padding_x // 2
if image.ndim == 2:
padding = ((padding_top, padding_y - padding_top),
(padding_left, padding_x - padding_left))
else:
padding = ((padding_top, padding_y - padding_top),
(padding_left, padding_x - padding_left), (0, 0))
return np.pad(image, padding, 'constant')