import os
import glob
import torch
import torch.jit
import torch.nn as nn


class Model(torch.jit.ScriptModule):
    CHECKPOINT_FILENAME_PATTERN = "model-{}.pth"
    __constants__ = [
        "_hidden1",
        "_hidden2",
        "_hidden3",
        "_hidden4",
        "_hidden5",
        "_hidden6",
        "_hidden7",
        "_hidden8",
        "_hidden9",
        "_hidden10",
        "_features",
        "_classifier",
        "_digit_length",
        "_digit1",
        "_digit2",
        "_digit3",
        "_digit4",
        "_digit5",
    ]

    def __init__(self):
        super(Model, self).__init__()
        self._hidden1 = nn.Sequential(
            nn.Conv2d(in_channels=3, out_channels=48, kernel_size=5, padding=2),
            nn.BatchNorm2d(num_features=48),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
            nn.Dropout(0.2),
        )
        self._hidden2 = nn.Sequential(
            nn.Conv2d(in_channels=48, out_channels=64, kernel_size=5, padding=2),
            nn.BatchNorm2d(num_features=64),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=1, padding=1),
            nn.Dropout(0.2),
        )
        self._hidden3 = nn.Sequential(
            nn.Conv2d(in_channels=64, out_channels=128, kernel_size=5, padding=2),
            nn.BatchNorm2d(num_features=128),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
            nn.Dropout(0.2),
        )
        self._hidden4 = nn.Sequential(
            nn.Conv2d(in_channels=128, out_channels=160, kernel_size=5, padding=2),
            nn.BatchNorm2d(num_features=160),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=1, padding=1),
            nn.Dropout(0.2),
        )
        self._hidden5 = nn.Sequential(
            nn.Conv2d(in_channels=160, out_channels=192, kernel_size=5, padding=2),
            nn.BatchNorm2d(num_features=192),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
            nn.Dropout(0.2),
        )
        self._hidden6 = nn.Sequential(
            nn.Conv2d(in_channels=192, out_channels=192, kernel_size=5, padding=2),
            nn.BatchNorm2d(num_features=192),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=1, padding=1),
            nn.Dropout(0.2),
        )
        self._hidden7 = nn.Sequential(
            nn.Conv2d(in_channels=192, out_channels=192, kernel_size=5, padding=2),
            nn.BatchNorm2d(num_features=192),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
            nn.Dropout(0.2),
        )
        self._hidden8 = nn.Sequential(
            nn.Conv2d(in_channels=192, out_channels=192, kernel_size=5, padding=2),
            nn.BatchNorm2d(num_features=192),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=1, padding=1),
            nn.Dropout(0.2),
        )
        self._hidden9 = nn.Sequential(nn.Linear(192 * 7 * 7, 3072), nn.ReLU())
        self._hidden10 = nn.Sequential(nn.Linear(3072, 3072), nn.ReLU())
        self._digit_length = nn.Sequential(nn.Linear(3072, 7))
        self._digit1 = nn.Sequential(nn.Linear(3072, 11))
        self._digit2 = nn.Sequential(nn.Linear(3072, 11))
        self._digit3 = nn.Sequential(nn.Linear(3072, 11))
        self._digit4 = nn.Sequential(nn.Linear(3072, 11))
        self._digit5 = nn.Sequential(nn.Linear(3072, 11))

    @torch.jit.script_method
    def forward(self, x):
        x = self._hidden1(x)
        x = self._hidden2(x)
        x = self._hidden3(x)
        x = self._hidden4(x)
        x = self._hidden5(x)
        x = self._hidden6(x)
        x = self._hidden7(x)
        x = self._hidden8(x)
        x = x.view(x.size(0), 192 * 7 * 7)
        x = self._hidden9(x)
        x = self._hidden10(x)
        length_logits = self._digit_length(x)
        digit1_logits = self._digit1(x)
        digit2_logits = self._digit2(x)
        digit3_logits = self._digit3(x)
        digit4_logits = self._digit4(x)
        digit5_logits = self._digit5(x)
        return (
            length_logits,
            digit1_logits,
            digit2_logits,
            digit3_logits,
            digit4_logits,
            digit5_logits,
        )

    def store(self, path_to_dir, step, maximum=5):
        path_to_models = glob.glob(
            os.path.join(path_to_dir, Model.CHECKPOINT_FILENAME_PATTERN.format("*"))
        )
        if len(path_to_models) == maximum:
            min_step = min(
                [
                    int(path_to_model.split("\\")[-1][6:-4])
                    for path_to_model in path_to_models
                ]
            )
            path_to_min_step_model = os.path.join(
                path_to_dir, Model.CHECKPOINT_FILENAME_PATTERN.format(min_step)
            )
            os.remove(path_to_min_step_model)

        path_to_checkpoint_file = os.path.join(
            path_to_dir, Model.CHECKPOINT_FILENAME_PATTERN.format(step)
        )
        torch.save(self.state_dict(), path_to_checkpoint_file)
        return path_to_checkpoint_file

    def restore(self, path_to_checkpoint_file):
        self.load_state_dict(
            torch.load(path_to_checkpoint_file, map_location=torch.device("cpu"))
        )
        return int(path_to_checkpoint_file.split("model-")[-1][:-4])