Genzo1010 commited on
Commit
dadc526
·
verified ·
1 Parent(s): bd4dc03

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +108 -45
app.py CHANGED
@@ -1,57 +1,120 @@
1
- from fastapi import FastAPI, File, UploadFile
2
- from fastapi.middleware.cors import CORSMiddleware
3
- from fastapi.middleware.gzip import GZipMiddleware
 
 
 
 
4
  import numpy as np
 
 
 
 
 
 
 
 
5
  from PIL import Image
6
  from paddleocr import PaddleOCR
7
- from doctr.io import DocumentFile
8
- from doctr.models import ocr_predictor
9
- import io
10
-
11
- app = FastAPI()
12
- app.add_middleware(
13
- CORSMiddleware,
14
- allow_origins=["*"],
15
- allow_credentials=True,
16
- allow_methods=["*"],
17
- allow_headers=["*"]
18
- )
19
-
20
- # Initialize models once at startup
21
- ocr_model = ocr_predictor(pretrained=True)
22
- paddle_ocr = PaddleOCR(lang='en', use_angle_cls=True)
23
-
24
- def ocr_with_doctr(file):
25
- text_output = ''
26
- doc = DocumentFile.from_pdf(file)
27
- result = ocr_model(doc)
28
- for page in result.pages:
29
- for block in page.blocks:
30
- for line in block.lines:
31
- text_output += " ".join([word.value for word in line.words]) + "\n"
32
- return text_output
33
-
34
  def ocr_with_paddle(img):
35
  finaltext = ''
36
- result = paddle_ocr.ocr(img)
 
 
 
37
  for i in range(len(result[0])):
38
  text = result[0][i][1][0]
39
- finaltext += ' ' + text
40
  return finaltext
41
 
42
- def generate_text_from_image(img):
43
- return ocr_with_paddle(img)
 
 
 
 
 
 
 
 
 
 
44
 
45
- @app.post("/ocr/")
46
- async def perform_ocr(file: UploadFile = File(...)):
47
- file_bytes = await file.read()
48
- if file.filename.endswith('.pdf'):
49
- text_output = ocr_with_doctr(io.BytesIO(file_bytes))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  else:
51
- img = np.array(Image.open(io.BytesIO(file_bytes)))
52
- text_output = generate_text_from_image(img)
53
- return {"ocr_text": text_output}
 
 
 
 
 
 
 
 
54
 
55
- @app.get("/test/")
56
- async def test_call():
57
- return {"message": "Hi. I'm running"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import tensorflow as tf
3
+ import keras_ocr
4
+ import requests
5
+ import cv2
6
+ import os
7
+ import csv
8
  import numpy as np
9
+ import pandas as pd
10
+ import huggingface_hub
11
+ from huggingface_hub import Repository
12
+ from datetime import datetime
13
+ import scipy.ndimage.interpolation as inter
14
+ import easyocr
15
+ import datasets
16
+ from datasets import load_dataset, Image
17
  from PIL import Image
18
  from paddleocr import PaddleOCR
19
+ from save_data import flag
20
+
21
+ """
22
+ Paddle OCR
23
+ """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  def ocr_with_paddle(img):
25
  finaltext = ''
26
+ ocr = PaddleOCR(lang='en', use_angle_cls=True)
27
+ # img_path = 'exp.jpeg'
28
+ result = ocr.ocr(img)
29
+
30
  for i in range(len(result[0])):
31
  text = result[0][i][1][0]
32
+ finaltext += ' '+ text
33
  return finaltext
34
 
35
+ """
36
+ Keras OCR
37
+ """
38
+ def ocr_with_keras(img):
39
+ output_text = ''
40
+ pipeline=keras_ocr.pipeline.Pipeline()
41
+ images=[keras_ocr.tools.read(img)]
42
+ predictions=pipeline.recognize(images)
43
+ first=predictions[0]
44
+ for text,box in first:
45
+ output_text += ' '+ text
46
+ return output_text
47
 
48
+ """
49
+ easy OCR
50
+ """
51
+ # gray scale image
52
+ def get_grayscale(image):
53
+ return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
54
+
55
+ # Thresholding or Binarization
56
+ def thresholding(src):
57
+ return cv2.threshold(src,127,255, cv2.THRESH_TOZERO)[1]
58
+ def ocr_with_easy(img):
59
+ gray_scale_image=get_grayscale(img)
60
+ thresholding(gray_scale_image)
61
+ cv2.imwrite('image.png',gray_scale_image)
62
+ reader = easyocr.Reader(['th','en'])
63
+ bounds = reader.readtext('image.png',paragraph="False",detail = 0)
64
+ bounds = ''.join(bounds)
65
+ return bounds
66
+
67
+ """
68
+ Generate OCR
69
+ """
70
+ def generate_ocr(Method,img):
71
+
72
+ text_output = ''
73
+ if (img).any():
74
+ add_csv = []
75
+ image_id = 1
76
+ print("Method___________________",Method)
77
+ if Method == 'EasyOCR':
78
+ text_output = ocr_with_easy(img)
79
+ if Method == 'KerasOCR':
80
+ text_output = ocr_with_keras(img)
81
+ if Method == 'PaddleOCR':
82
+ text_output = ocr_with_paddle(img)
83
+
84
+ try:
85
+ flag(Method,text_output,img)
86
+ except Exception as e:
87
+ print(e)
88
+ return text_output
89
  else:
90
+ raise gr.Error("Please upload an image!!!!")
91
+
92
+ # except Exception as e:
93
+ # print("Error in ocr generation ==>",e)
94
+ # text_output = "Something went wrong"
95
+ # return text_output
96
+
97
+
98
+ """
99
+ Create user interface for OCR demo
100
+ """
101
 
102
+ # image = gr.Image(shape=(300, 300))
103
+ image = gr.Image()
104
+ method = gr.Radio(["PaddleOCR","EasyOCR", "KerasOCR"],value="PaddleOCR")
105
+ output = gr.Textbox(label="Output")
106
+
107
+ demo = gr.Interface(
108
+ generate_ocr,
109
+ [method,image],
110
+ output,
111
+ title="Optical Character Recognition",
112
+ css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}",
113
+ article = """<p style='text-align: center;'>Feel free to give us your thoughts on this demo and please contact us at
114
+ <a href="mailto:[email protected]" target="_blank">[email protected]</a>
115
+ <p style='text-align: center;'>Developed by: <a href="https://www.pragnakalp.com" target="_blank">Pragnakalp Techlabs</a></p>"""
116
+
117
+
118
+ )
119
+ # demo.launch(enable_queue = False)
120
+ demo.launch(show_error=True)