Spaces:
Running
Running
File size: 15,918 Bytes
7e02fda e73da9c 7e02fda e73da9c 7e02fda e73da9c 19efc84 4397c18 19efc84 e73da9c 19efc84 7e02fda e73da9c 19efc84 e73da9c a0738ba e73da9c 511e6ea 7e02fda e73da9c 19efc84 4397c18 fc577e0 7e02fda e73da9c a0738ba e73da9c 7e02fda a0738ba 7e02fda fc577e0 a0738ba e73da9c 19efc84 e73da9c 7e02fda a0738ba 7e02fda a0738ba e73da9c a0738ba fc577e0 7e02fda 4397c18 74e8f33 4397c18 e73da9c a0738ba 4397c18 e73da9c 7e02fda e73da9c 4397c18 e73da9c 4397c18 e73da9c 4397c18 e73da9c 4397c18 e73da9c 4397c18 e73da9c 83e4dcb 8684377 53217a2 8684377 a0738ba e73da9c a0738ba e73da9c a0738ba 53217a2 e73da9c fc577e0 2be93fd fc577e0 2be93fd fc577e0 e73da9c 7e02fda a0738ba 7e02fda e73da9c 2be93fd e73da9c 92e08c4 a0738ba 92e08c4 19c39fb 92e08c4 e73da9c 8684377 c8d986a 4397c18 c8d986a e73da9c 8684377 c8d986a 8684377 e73da9c b24ee49 c8d986a e73da9c 53217a2 e73da9c 2be93fd e73da9c 7e02fda a0738ba e73da9c 7e02fda a0738ba e73da9c 7e02fda a0738ba 2be93fd fc577e0 a0738ba e73da9c 2be93fd e73da9c 7e02fda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
# Will be fixed soon, but meanwhile:
import os
if os.getenv('SPACES_ZERO_GPU') == "true":
os.environ['SPACES_ZERO_GPU'] = "1"
import gradio as gr
import random
import torch
from torch import inference_mode
# from tempfile import NamedTemporaryFile
from typing import Optional
import numpy as np
from models import load_model
import utils
import spaces
from inversion_utils import inversion_forward_process, inversion_reverse_process
# current_loaded_model = "cvssp/audioldm2-music"
# # current_loaded_model = "cvssp/audioldm2-music"
# ldm_stable = load_model(current_loaded_model, device, 200) # deafult model
LDM2 = "cvssp/audioldm2"
MUSIC = "cvssp/audioldm2-music"
LDM2_LARGE = "cvssp/audioldm2-large"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ldm2 = load_model(model_id=LDM2, device=device)
ldm2_large = load_model(model_id=LDM2_LARGE, device=device)
ldm2_music = load_model(model_id=MUSIC, device=device)
def randomize_seed_fn(seed, randomize_seed):
if randomize_seed:
seed = random.randint(0, np.iinfo(np.int32).max)
torch.manual_seed(seed)
return seed
def invert(ldm_stable, x0, prompt_src, num_diffusion_steps, cfg_scale_src): # , ldm_stable):
# ldm_stable.model.scheduler.set_timesteps(num_diffusion_steps, device=device)
with inference_mode():
w0 = ldm_stable.vae_encode(x0)
# find Zs and wts - forward process
_, zs, wts = inversion_forward_process(ldm_stable, w0, etas=1,
prompts=[prompt_src],
cfg_scales=[cfg_scale_src],
prog_bar=True,
num_inference_steps=num_diffusion_steps,
numerical_fix=True)
return zs, wts
def sample(ldm_stable, zs, wts, steps, prompt_tar, tstart, cfg_scale_tar): # , ldm_stable):
# reverse process (via Zs and wT)
tstart = torch.tensor(tstart, dtype=torch.int)
skip = steps - tstart
w0, _ = inversion_reverse_process(ldm_stable, xT=wts, skips=steps - skip,
etas=1., prompts=[prompt_tar],
neg_prompts=[""], cfg_scales=[cfg_scale_tar],
prog_bar=True,
zs=zs[:int(steps - skip)])
# vae decode image
with inference_mode():
x0_dec = ldm_stable.vae_decode(w0)
if x0_dec.dim() < 4:
x0_dec = x0_dec[None, :, :, :]
with torch.no_grad():
audio = ldm_stable.decode_to_mel(x0_dec)
return (16000, audio.squeeze().cpu().numpy())
def get_duration(input_audio, model_id: str, do_inversion: bool,
wts: Optional[torch.Tensor], zs: Optional[torch.Tensor],
saved_inv_model: str, source_prompt="", target_prompt="",
steps=200, cfg_scale_src=3.5, cfg_scale_tar=12, t_start=45, randomize_seed=True):
if model_id == LDM2:
factor = 0.8
elif model_id == LDM2_LARGE:
factor = 1.5
else: # MUSIC
factor = 1
mult = 0
if do_inversion or randomize_seed:
mult = steps
if input_audio is None:
raise gr.Error('Input audio missing!')
duration = min(utils.get_duration(input_audio), 30)
time_per_iter_of_full = factor * ((t_start /100 * steps)*2 + mult) * 0.2
print('expected time:', time_per_iter_of_full / 30 * duration)
return time_per_iter_of_full / 30 * duration
@spaces.GPU(duration=get_duration)
def edit(
# cache_dir,
input_audio,
model_id: str,
do_inversion: bool,
# wtszs_file: str,
wts: Optional[torch.Tensor], zs: Optional[torch.Tensor],
saved_inv_model: str,
source_prompt="",
target_prompt="",
steps=200,
cfg_scale_src=3.5,
cfg_scale_tar=12,
t_start=45,
randomize_seed=True):
print(model_id)
if model_id == LDM2:
ldm_stable = ldm2
elif model_id == LDM2_LARGE:
ldm_stable = ldm2_large
else: # MUSIC
ldm_stable = ldm2_music
ldm_stable.model.scheduler.set_timesteps(steps, device=device)
# If the inversion was done for a different model, we need to re-run the inversion
if not do_inversion and (saved_inv_model is None or saved_inv_model != model_id):
do_inversion = True
if input_audio is None:
raise gr.Error('Input audio missing!')
x0 = utils.load_audio(input_audio, ldm_stable.get_fn_STFT(), device=device)
# if not (do_inversion or randomize_seed):
# if not os.path.exists(wtszs_file):
# do_inversion = True
# Too much time has passed
if wts is None or zs is None:
do_inversion = True
if do_inversion or randomize_seed: # always re-run inversion
zs_tensor, wts_tensor = invert(ldm_stable=ldm_stable, x0=x0, prompt_src=source_prompt,
num_diffusion_steps=steps,
cfg_scale_src=cfg_scale_src)
# f = NamedTemporaryFile("wb", dir=cache_dir, suffix=".pth", delete=False)
# torch.save({'wts': wts_tensor, 'zs': zs_tensor}, f.name)
# wtszs_file = f.name
# wtszs_file = gr.State(value=f.name)
# wts = gr.State(value=wts_tensor)
wts = wts_tensor
zs = zs_tensor
# zs = gr.State(value=zs_tensor)
# demo.move_resource_to_block_cache(f.name)
saved_inv_model = model_id
do_inversion = False
else:
# wtszs = torch.load(wtszs_file, map_location=device)
# # wtszs = torch.load(wtszs_file.f, map_location=device)
# wts_tensor = wtszs['wts']
# zs_tensor = wtszs['zs']
wts_tensor = wts.to(device)
zs_tensor = zs.to(device)
# make sure t_start is in the right limit
# t_start = change_tstart_range(t_start, steps)
output = sample(ldm_stable, zs_tensor, wts_tensor, steps, prompt_tar=target_prompt,
tstart=int(t_start / 100 * steps), cfg_scale_tar=cfg_scale_tar)
return output, wts.cpu(), zs.cpu(), saved_inv_model, do_inversion
# return output, wtszs_file, saved_inv_model, do_inversion
def get_example():
case = [
['Examples/Beethoven.wav',
'',
'A recording of an arcade game soundtrack.',
45,
'cvssp/audioldm2-music',
'27s',
'Examples/Beethoven_arcade.wav',
],
['Examples/Beethoven.wav',
'A high quality recording of wind instruments and strings playing.',
'A high quality recording of a piano playing.',
45,
'cvssp/audioldm2-music',
'27s',
'Examples/Beethoven_piano.wav',
],
['Examples/ModalJazz.wav',
'Trumpets playing alongside a piano, bass and drums in an upbeat old-timey cool jazz song.',
'A banjo playing alongside a piano, bass and drums in an upbeat old-timey cool country song.',
45,
'cvssp/audioldm2-music',
'106s',
'Examples/ModalJazz_banjo.wav',],
['Examples/Cat.wav',
'',
'A dog barking.',
75,
'cvssp/audioldm2-large',
'10s',
'Examples/Cat_dog.wav',]
]
return case
intro = """
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;"> ZETA Editing 🎧 </h1>
<h2 style="font-weight: 1400; text-align: center; margin-bottom: 7px;"> Zero-Shot Text-Based Audio Editing Using DDPM Inversion 🎛️ </h2>
<h3 style="margin-bottom: 10px; text-align: center;">
<a href="https://arxiv.org/abs/2402.10009">[Paper]</a> |
<a href="https://hilamanor.github.io/AudioEditing/">[Project page]</a> |
<a href="https://github.com/HilaManor/AudioEditingCode">[Code]</a>
</h3>
<p style="font-size: 0.9rem; margin: 0rem; line-height: 1.2em; margin-top:1em">
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<a href="https://huggingface.co/spaces/hilamanor/audioEditing?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em; display:inline" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" ></a>
</p>
"""
help = """
<div style="font-size:medium">
<b>Instructions:</b><br>
<ul style="line-height: normal">
<li>You must provide an input audio and a target prompt to edit the audio. </li>
<li>T<sub>start</sub> is used to control the tradeoff between fidelity to the original signal and text-adhearance.
Lower value -> favor fidelity. Higher value -> apply a stronger edit.</li>
<li>Make sure that you use an AudioLDM2 version that is suitable for your input audio.
For example, use the music version for music and the large version for general audio.
</li>
<li>You can additionally provide a source prompt to guide even further the editing process.</li>
<li>Longer input will take more time.</li>
<li><strong>Unlimited length</strong>: This space automatically trims input audio to a maximum length of 30 seconds.
For unlimited length, duplicated the space, and remove the trimming by changing the code.
Specifically, in the <code style="display:inline; background-color: lightgrey; ">load_audio</code> function in the <code style="display:inline; background-color: lightgrey; ">utils.py</code> file,
change <code style="display:inline; background-color: lightgrey; ">duration = min(audioldm.utils.get_duration(audio_path), 30)</code> to
<code style="display:inline; background-color: lightgrey; ">duration = audioldm.utils.get_duration(audio_path)</code>.
</ul>
</div>
"""
with gr.Blocks(css='style.css') as demo: #, delete_cache=(3600, 3600)) as demo:
def reset_do_inversion(do_inversion_user, do_inversion):
# do_inversion = gr.State(value=True)
do_inversion = True
do_inversion_user = True
return do_inversion_user, do_inversion
# handle the case where the user clicked the button but the inversion was not done
def clear_do_inversion_user(do_inversion_user):
do_inversion_user = False
return do_inversion_user
def post_match_do_inversion(do_inversion_user, do_inversion):
if do_inversion_user:
do_inversion = True
do_inversion_user = False
return do_inversion_user, do_inversion
gr.HTML(intro)
wts = gr.State()
zs = gr.State()
wtszs = gr.State()
# cache_dir = gr.State(demo.GRADIO_CACHE)
saved_inv_model = gr.State()
# current_loaded_model = gr.State(value="cvssp/audioldm2-music")
# ldm_stable = load_model("cvssp/audioldm2-music", device, 200)
# ldm_stable = gr.State(value=ldm_stable)
do_inversion = gr.State(value=True) # To save some runtime when editing the same thing over and over
do_inversion_user = gr.State(value=False)
with gr.Group():
gr.Markdown("💡 **note**: input longer than **30 sec** is automatically trimmed (for unlimited input, see the Help section below)")
with gr.Row():
input_audio = gr.Audio(sources=["upload", "microphone"], type="filepath", editable=True, label="Input Audio",
interactive=True, scale=1)
output_audio = gr.Audio(label="Edited Audio", interactive=False, scale=1)
with gr.Row():
tar_prompt = gr.Textbox(label="Prompt", info="Describe your desired edited output",
placeholder="a recording of a happy upbeat arcade game soundtrack",
lines=2, interactive=True)
with gr.Row():
t_start = gr.Slider(minimum=15, maximum=85, value=45, step=1, label="T-start (%)", interactive=True, scale=3,
info="Lower T-start -> closer to original audio. Higher T-start -> stronger edit.")
# model_id = gr.Radio(label="AudioLDM2 Version",
model_id = gr.Dropdown(label="AudioLDM2 Version",
choices=["cvssp/audioldm2",
"cvssp/audioldm2-large",
"cvssp/audioldm2-music"],
info="Choose a checkpoint suitable for your intended audio and edit",
value="cvssp/audioldm2-music", interactive=True, type="value", scale=2)
with gr.Row():
with gr.Column():
submit = gr.Button("Edit")
with gr.Accordion("More Options", open=False):
with gr.Row():
src_prompt = gr.Textbox(label="Source Prompt", lines=2, interactive=True,
info="Optional: Describe the original audio input",
placeholder="A recording of a happy upbeat classical music piece",)
with gr.Row():
cfg_scale_src = gr.Number(value=3, minimum=0.5, maximum=25, precision=None,
label="Source Guidance Scale", interactive=True, scale=1)
cfg_scale_tar = gr.Number(value=12, minimum=0.5, maximum=25, precision=None,
label="Target Guidance Scale", interactive=True, scale=1)
steps = gr.Number(value=50, step=1, minimum=20, maximum=300,
info="Higher values (e.g. 200) yield higher-quality generation.",
label="Num Diffusion Steps", interactive=True, scale=1)
with gr.Row():
seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
randomize_seed = gr.Checkbox(label='Randomize seed', value=False)
length = gr.Number(label="Length", interactive=False, visible=False)
with gr.Accordion("Help💡", open=False):
gr.HTML(help)
submit.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=[seed], queue=False).then(
fn=clear_do_inversion_user, inputs=[do_inversion_user], outputs=[do_inversion_user]).then(
fn=edit,
inputs=[#cache_dir,
input_audio,
model_id,
do_inversion,
# current_loaded_model, ldm_stable,
wts, zs,
# wtszs,
saved_inv_model,
src_prompt,
tar_prompt,
steps,
cfg_scale_src,
cfg_scale_tar,
t_start,
randomize_seed
],
outputs=[output_audio, wts, zs, # wtszs,
saved_inv_model, do_inversion] # , current_loaded_model, ldm_stable],
).then(post_match_do_inversion, inputs=[do_inversion_user, do_inversion], outputs=[do_inversion_user, do_inversion]
).then(lambda x: (demo.temp_file_sets.append(set([str(gr.utils.abspath(x))])) if type(x) is str else None),
inputs=wtszs)
# demo.move_resource_to_block_cache(wtszs.value)
# If sources changed we have to rerun inversion
input_audio.change(fn=reset_do_inversion, inputs=[do_inversion_user, do_inversion], outputs=[do_inversion_user, do_inversion])
src_prompt.change(fn=reset_do_inversion, inputs=[do_inversion_user, do_inversion], outputs=[do_inversion_user, do_inversion])
model_id.change(fn=reset_do_inversion, inputs=[do_inversion_user, do_inversion], outputs=[do_inversion_user, do_inversion])
cfg_scale_src.change(fn=reset_do_inversion, inputs=[do_inversion_user, do_inversion], outputs=[do_inversion_user, do_inversion])
steps.change(fn=reset_do_inversion, inputs=[do_inversion_user, do_inversion], outputs=[do_inversion_user, do_inversion])
gr.Examples(
label="Examples",
examples=get_example(),
inputs=[input_audio, src_prompt, tar_prompt, t_start, model_id, length, output_audio],
outputs=[output_audio]
)
demo.queue()
demo.launch(state_session_capacity=15)
|