GeorgiosIoannouCoder
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,531 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#############################################################################################################################
|
2 |
+
# Filename : app.py
|
3 |
+
# Description: A Streamlit application to generate recipes given an image of a food and an image of ingredients.
|
4 |
+
# Author : Georgios Ioannou
|
5 |
+
#
|
6 |
+
# Copyright Β© 2024 by Georgios Ioannou
|
7 |
+
#############################################################################################################################
|
8 |
+
# Import libraries.
|
9 |
+
|
10 |
+
import openai # gpt-3.5-turbo model inference.
|
11 |
+
import os # Load environment variable(s).
|
12 |
+
import requests # Send HTTP GET request to Hugging Face models for inference.
|
13 |
+
import streamlit as st # Build the GUI of the application.
|
14 |
+
import torch # Load Salesforce/blip model(s) on GPU.
|
15 |
+
|
16 |
+
|
17 |
+
from dotenv import load_dotenv, find_dotenv # Read local .env file.
|
18 |
+
from langchain.chat_models import ChatOpenAI # Access to OpenAI gpt-3.5-turbo model.
|
19 |
+
from langchain.chains import LLMChain # Chain to run queries against LLMs.
|
20 |
+
|
21 |
+
# A prompt template. It accepts a set of parameters from the user that can be used to generate a prompt for a language model.
|
22 |
+
from langchain.prompts import PromptTemplate
|
23 |
+
from PIL import Image # Open and identify a given image file.
|
24 |
+
from transformers import BlipProcessor, BlipForQuestionAnswering # VQA model inference.
|
25 |
+
|
26 |
+
#############################################################################################################################
|
27 |
+
# Load environment variable(s).
|
28 |
+
|
29 |
+
load_dotenv(find_dotenv()) # Read local .env file.
|
30 |
+
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
31 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
32 |
+
|
33 |
+
#############################################################################################################################
|
34 |
+
# Function to apply local CSS.
|
35 |
+
|
36 |
+
|
37 |
+
def local_css(file_name):
|
38 |
+
with open(file_name) as f:
|
39 |
+
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
|
40 |
+
|
41 |
+
|
42 |
+
#############################################################################################################################
|
43 |
+
# Load the Visual Question Answering (VQA) model directly.
|
44 |
+
# Using transformers.
|
45 |
+
|
46 |
+
|
47 |
+
@st.cache_resource
|
48 |
+
def load_model():
|
49 |
+
blip_processor_base = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
50 |
+
blip_model_base = BlipForQuestionAnswering.from_pretrained(
|
51 |
+
"Salesforce/blip-vqa-base"
|
52 |
+
)
|
53 |
+
|
54 |
+
# Backup model.
|
55 |
+
# blip_processor_large = BlipProcessor.from_pretrained("Salesforce/blip-vqa-capfilt-large")
|
56 |
+
# blip_model_large = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-capfilt-large")
|
57 |
+
# return blip_processor_large, blip_model_large
|
58 |
+
|
59 |
+
return blip_processor_base, blip_model_base
|
60 |
+
|
61 |
+
|
62 |
+
#############################################################################################################################
|
63 |
+
# General function for any Salesforce/blip model(s).
|
64 |
+
# VQA model.
|
65 |
+
|
66 |
+
|
67 |
+
def generate_answer_blip(processor, model, image, question):
|
68 |
+
# Prepare image + question.
|
69 |
+
|
70 |
+
inputs = processor(images=image, text=question, return_tensors="pt")
|
71 |
+
|
72 |
+
generated_ids = model.generate(**inputs, max_length=50)
|
73 |
+
|
74 |
+
generated_answer = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
75 |
+
|
76 |
+
return generated_answer
|
77 |
+
|
78 |
+
|
79 |
+
#############################################################################################################################
|
80 |
+
# Generate answer from the Salesforce/blip model(s).
|
81 |
+
# VQA model.
|
82 |
+
|
83 |
+
|
84 |
+
@st.cache_resource
|
85 |
+
def generate_answer(image, question):
|
86 |
+
answer_blip_base = generate_answer_blip(
|
87 |
+
processor=blip_processor_base,
|
88 |
+
model=blip_model_base,
|
89 |
+
image=image,
|
90 |
+
question=question,
|
91 |
+
)
|
92 |
+
|
93 |
+
# answer_blip_large = generate_answer_blip(blip_processor_large, blip_model_large, image, question)
|
94 |
+
# return answer_blip_large
|
95 |
+
|
96 |
+
return answer_blip_base
|
97 |
+
|
98 |
+
|
99 |
+
#############################################################################################################################
|
100 |
+
# Detect ingredients on an image.
|
101 |
+
# Object detection model.
|
102 |
+
|
103 |
+
|
104 |
+
@st.cache_resource
|
105 |
+
def generate_ingredients(image):
|
106 |
+
API_URL = "https://api-inference.huggingface.co/models/facebook/detr-resnet-50"
|
107 |
+
|
108 |
+
headers = {"Authorization": f"Bearer {HUGGINGFACEHUB_API_TOKEN}"}
|
109 |
+
|
110 |
+
with open(image, "rb") as img:
|
111 |
+
data = img.read()
|
112 |
+
response = requests.post(url=API_URL, data=data, headers=headers)
|
113 |
+
ingredients = response.json()
|
114 |
+
return ingredients
|
115 |
+
|
116 |
+
|
117 |
+
#############################################################################################################################
|
118 |
+
# Return the recipe generated by the model for the food and ingredients detected by the previous models.
|
119 |
+
# Using Langchain.
|
120 |
+
|
121 |
+
|
122 |
+
@st.cache_resource
|
123 |
+
def generate_recipe(food, ingredients, chef):
|
124 |
+
# Model used here: "gpt-3.5-turbo".
|
125 |
+
|
126 |
+
# The template can be customized to meet one's needs such as:
|
127 |
+
# Generate a recipe, generate a scenario, and generate lyrics of a song.
|
128 |
+
|
129 |
+
template = """
|
130 |
+
You are a chef.
|
131 |
+
You must sound like {chef}.
|
132 |
+
You must make use of these ingredients: {ingredients}.
|
133 |
+
Generate a detailed recipe step by step based on the above constraints for this food: {food}.
|
134 |
+
"""
|
135 |
+
|
136 |
+
prompt = PromptTemplate(
|
137 |
+
template=template, input_variables=["food", "ingredients", "chef"]
|
138 |
+
)
|
139 |
+
|
140 |
+
recipe_llm = LLMChain(
|
141 |
+
llm=ChatOpenAI(
|
142 |
+
model_name="gpt-3.5-turbo", temperature=0
|
143 |
+
), # Increasing the temperature, the model becomes more creative and takes longer for inference.
|
144 |
+
prompt=prompt,
|
145 |
+
verbose=True, # Print intermediate values to the console.
|
146 |
+
)
|
147 |
+
|
148 |
+
recipe = recipe_llm.predict(
|
149 |
+
food=food, ingredients=ingredients, chef=chef
|
150 |
+
) # Format prompt with kwargs and pass to LLM.
|
151 |
+
|
152 |
+
return recipe
|
153 |
+
|
154 |
+
|
155 |
+
#############################################################################################################################
|
156 |
+
# Return the speech generated by the model for the recipe.
|
157 |
+
# Using inference api.
|
158 |
+
|
159 |
+
|
160 |
+
def generate_speech(response):
|
161 |
+
# Model used here: "facebook/mms-tts-eng".
|
162 |
+
# Backup model: "espnet/kan-bayashi_ljspeech_vits.
|
163 |
+
|
164 |
+
# API_URL = (
|
165 |
+
# "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
|
166 |
+
# )
|
167 |
+
API_URL = "https://api-inference.huggingface.co/models/facebook/mms-tts-eng"
|
168 |
+
|
169 |
+
headers = {"Authorization": f"Bearer {HUGGINGFACEHUB_API_TOKEN}"}
|
170 |
+
|
171 |
+
payload = {"inputs": response}
|
172 |
+
|
173 |
+
response = requests.post(url=API_URL, headers=headers, json=payload)
|
174 |
+
|
175 |
+
with open("audio.flac", "wb") as file:
|
176 |
+
file.write(response.content)
|
177 |
+
|
178 |
+
|
179 |
+
#############################################################################################################################
|
180 |
+
# Conversation with OpenAI gpt-3.5-turbo model.
|
181 |
+
|
182 |
+
|
183 |
+
def get_completion_from_messages(messages, model="gpt-3.5-turbo", temperature=0):
|
184 |
+
response = openai.ChatCompletion.create(
|
185 |
+
model=model,
|
186 |
+
messages=messages,
|
187 |
+
temperature=temperature, # This is the degree of randomness of the model's output.
|
188 |
+
)
|
189 |
+
# print(str(response.choices[0].message))
|
190 |
+
return response.choices[0].message["content"]
|
191 |
+
|
192 |
+
|
193 |
+
#############################################################################################################################
|
194 |
+
# Page title and favicon.
|
195 |
+
|
196 |
+
st.set_page_config(page_title="ChefBot | Recipe Generator/Assistant", page_icon="π΄")
|
197 |
+
|
198 |
+
#############################################################################################################################
|
199 |
+
# Load the Salesforce/blip model directly.
|
200 |
+
|
201 |
+
if torch.cuda.is_available():
|
202 |
+
device = torch.device("cuda")
|
203 |
+
# elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
204 |
+
# device = torch.device("mps")
|
205 |
+
else:
|
206 |
+
device = torch.device("cpu")
|
207 |
+
|
208 |
+
blip_processor_base, blip_model_base = load_model()
|
209 |
+
blip_model_base.to(device)
|
210 |
+
|
211 |
+
#############################################################################################################################
|
212 |
+
# Define the chefs for the dropdown menu.
|
213 |
+
|
214 |
+
chefs = [
|
215 |
+
"Gordon Ramsay",
|
216 |
+
"Donald Trump",
|
217 |
+
"Cardi B",
|
218 |
+
]
|
219 |
+
|
220 |
+
#############################################################################################################################
|
221 |
+
# Main function to create the Streamlit web application.
|
222 |
+
|
223 |
+
|
224 |
+
def main():
|
225 |
+
try:
|
226 |
+
#####################################################################################################################
|
227 |
+
|
228 |
+
# Load CSS.
|
229 |
+
|
230 |
+
local_css("styles/style.css")
|
231 |
+
|
232 |
+
#####################################################################################################################
|
233 |
+
|
234 |
+
# Title.
|
235 |
+
|
236 |
+
title = f"""<h1 align="center" style="font-family: monospace; font-size: 2.1rem; margin-top: -4rem">
|
237 |
+
ChefBot - Recipe Generator/Assistant</h1>"""
|
238 |
+
st.markdown(title, unsafe_allow_html=True)
|
239 |
+
# st.title("ChefBot - Automated Recipe Assistant")
|
240 |
+
|
241 |
+
#####################################################################################################################
|
242 |
+
|
243 |
+
# Subtitle.
|
244 |
+
|
245 |
+
subtitle = f"""<h2 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: -2rem">
|
246 |
+
CUNY Tech Prep Tutorial 2</h2>"""
|
247 |
+
st.markdown(subtitle, unsafe_allow_html=True)
|
248 |
+
|
249 |
+
#####################################################################################################################
|
250 |
+
|
251 |
+
# Image.
|
252 |
+
|
253 |
+
image = "./ctp.png"
|
254 |
+
left_co, cent_co, last_co = st.columns(3)
|
255 |
+
with cent_co:
|
256 |
+
st.image(image=image)
|
257 |
+
|
258 |
+
#####################################################################################################################
|
259 |
+
|
260 |
+
# Heading 1.
|
261 |
+
|
262 |
+
heading1 = f"""<h3 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: 1rem">
|
263 |
+
Food</h3>"""
|
264 |
+
st.markdown(heading1, unsafe_allow_html=True)
|
265 |
+
|
266 |
+
#####################################################################################################################
|
267 |
+
|
268 |
+
# Upload an image.
|
269 |
+
|
270 |
+
uploaded_file_food = st.file_uploader(
|
271 |
+
label="Choose an image:",
|
272 |
+
key="food",
|
273 |
+
help="An image of the food that you want a recipe for.",
|
274 |
+
)
|
275 |
+
|
276 |
+
#####################################################################################################################
|
277 |
+
|
278 |
+
if uploaded_file_food is not None:
|
279 |
+
# Display the uploaded image.
|
280 |
+
|
281 |
+
bytes_data = uploaded_file_food.getvalue()
|
282 |
+
with open(uploaded_file_food.name, "wb") as file:
|
283 |
+
file.write(bytes_data)
|
284 |
+
st.image(
|
285 |
+
uploaded_file_food, caption="Uploaded Image.", use_column_width=True
|
286 |
+
)
|
287 |
+
|
288 |
+
raw_image = Image.open(uploaded_file_food.name).convert("RGB")
|
289 |
+
|
290 |
+
#################################################################################################################
|
291 |
+
|
292 |
+
# VQA model inference.
|
293 |
+
|
294 |
+
with st.spinner(
|
295 |
+
text="Detecting food..."
|
296 |
+
): # Spinner to keep the application interactive.
|
297 |
+
# Model inference.
|
298 |
+
|
299 |
+
answer = generate_answer(raw_image, "Is there a food in the picture?")[
|
300 |
+
0
|
301 |
+
]
|
302 |
+
|
303 |
+
if answer == "yes":
|
304 |
+
st.success(f"Food detected? {answer}", icon="β")
|
305 |
+
question = "What is the food in the picture?"
|
306 |
+
food = generate_answer(image=raw_image, question=question)[0]
|
307 |
+
st.success(f"Food detected: {food}", icon="β
")
|
308 |
+
|
309 |
+
#################################################################################################################
|
310 |
+
|
311 |
+
# Heading 2.
|
312 |
+
|
313 |
+
heading2 = f"""<h3 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: 1rem">
|
314 |
+
Ingredients</h3>"""
|
315 |
+
st.markdown(heading2, unsafe_allow_html=True)
|
316 |
+
|
317 |
+
#################################################################################################################
|
318 |
+
|
319 |
+
# Upload an image.
|
320 |
+
|
321 |
+
uploaded_file_ingredients = st.file_uploader(
|
322 |
+
label="Choose an image:",
|
323 |
+
key="ingredients",
|
324 |
+
help="An image of the ingredients that you want to use.",
|
325 |
+
)
|
326 |
+
|
327 |
+
#################################################################################################################
|
328 |
+
|
329 |
+
if uploaded_file_ingredients is not None:
|
330 |
+
# Display the uploaded image.
|
331 |
+
|
332 |
+
bytes_data = uploaded_file_ingredients.getvalue()
|
333 |
+
with open(uploaded_file_ingredients.name, "wb") as file:
|
334 |
+
file.write(bytes_data)
|
335 |
+
st.image(
|
336 |
+
uploaded_file_ingredients,
|
337 |
+
caption="Uploaded Image.",
|
338 |
+
use_column_width=True,
|
339 |
+
)
|
340 |
+
|
341 |
+
#############################################################################################################
|
342 |
+
|
343 |
+
# Object detection model inference.
|
344 |
+
|
345 |
+
with st.spinner(
|
346 |
+
text="Detecting Ingredients..."
|
347 |
+
): # Spinner to keep the application interactive.
|
348 |
+
# Model inference.
|
349 |
+
ingredients_list = generate_ingredients(
|
350 |
+
image=uploaded_file_ingredients.name
|
351 |
+
)
|
352 |
+
|
353 |
+
#############################################################################################################
|
354 |
+
|
355 |
+
# Display/Output the ingredients detected.
|
356 |
+
|
357 |
+
ingredients = []
|
358 |
+
st.success(f"Ingredients:", icon="π")
|
359 |
+
for i, ingredient_dict in enumerate(ingredients_list):
|
360 |
+
ingredients.append(ingredient_dict["label"])
|
361 |
+
st.write(i + 1, ingredient_dict["label"])
|
362 |
+
|
363 |
+
#############################################################################################################
|
364 |
+
|
365 |
+
# Heading 3.
|
366 |
+
|
367 |
+
heading3 = f"""<h3 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: 1rem">
|
368 |
+
ChefBot</h3>"""
|
369 |
+
st.markdown(heading3, unsafe_allow_html=True)
|
370 |
+
|
371 |
+
#############################################################################################################
|
372 |
+
|
373 |
+
# Dropdown menu.
|
374 |
+
|
375 |
+
chef = st.selectbox(
|
376 |
+
label="Select your chef:",
|
377 |
+
options=chefs,
|
378 |
+
help="Select your chef.",
|
379 |
+
)
|
380 |
+
|
381 |
+
#############################################################################################################
|
382 |
+
|
383 |
+
# Generate Recipe button
|
384 |
+
|
385 |
+
col1, col2, col3 = st.columns(3)
|
386 |
+
with col2:
|
387 |
+
button_recipe = st.button("Generate Recipe")
|
388 |
+
|
389 |
+
#############################################################################################################
|
390 |
+
|
391 |
+
if button_recipe:
|
392 |
+
#########################################################################################################
|
393 |
+
# Langchain + OpenAI gpt-3.5-turbo model inference.
|
394 |
+
|
395 |
+
with st.spinner(
|
396 |
+
text="Generating Recipe..."
|
397 |
+
): # Spinner to keep the application interactive.
|
398 |
+
# Model inference.
|
399 |
+
|
400 |
+
recipe = generate_recipe(
|
401 |
+
food=food, ingredients=ingredients, chef=chef
|
402 |
+
)
|
403 |
+
|
404 |
+
#########################################################################################################
|
405 |
+
# Storing the recipe in session storage for future runs.
|
406 |
+
|
407 |
+
st.session_state["recipe"] = recipe
|
408 |
+
|
409 |
+
#########################################################################################################
|
410 |
+
# Text to speech model inference.
|
411 |
+
|
412 |
+
with st.spinner(
|
413 |
+
text="Generating Audio..."
|
414 |
+
): # Spinner to keep the application interactive.
|
415 |
+
# Model inference.
|
416 |
+
|
417 |
+
generate_speech(response=recipe)
|
418 |
+
|
419 |
+
#########################################################################################################
|
420 |
+
# Display/Output the generated recipe in text and audio.
|
421 |
+
|
422 |
+
with st.expander(label="Recipe"):
|
423 |
+
st.write(recipe)
|
424 |
+
st.audio("audio.flac")
|
425 |
+
|
426 |
+
#########################################################################################################
|
427 |
+
|
428 |
+
# st.write(st.session_state)
|
429 |
+
|
430 |
+
#############################################################################################################
|
431 |
+
# Conversation with ChefBot.
|
432 |
+
|
433 |
+
if "recipe" in st.session_state:
|
434 |
+
#########################################################################################################
|
435 |
+
|
436 |
+
# Context for the ChefBot. Context is use to accumulate messages.
|
437 |
+
|
438 |
+
context = [
|
439 |
+
{
|
440 |
+
"role": "system",
|
441 |
+
"content": f"""
|
442 |
+
You are a ChefBot, an automated service to guide users on how to cook step by step.
|
443 |
+
You must sound like {chef}.
|
444 |
+
You must first greet the user.
|
445 |
+
You must help the user step by step with this recipe: {st.session_state['recipe']}.
|
446 |
+
After you have given all of the steps of the recipe,
|
447 |
+
you must thank the user and ask for user feedback both on the recipe and on your personality.
|
448 |
+
Do NOT repeat the steps of any recipe during the conversation with the user.""",
|
449 |
+
}
|
450 |
+
]
|
451 |
+
#########################################################################################################
|
452 |
+
|
453 |
+
# User input.
|
454 |
+
|
455 |
+
user_input = st.text_input(
|
456 |
+
label="User Input:",
|
457 |
+
key="user_input",
|
458 |
+
help="Follow up with the chef for any questions on the recipe.",
|
459 |
+
placeholder="Clarify step 1.",
|
460 |
+
)
|
461 |
+
|
462 |
+
#########################################################################################################
|
463 |
+
|
464 |
+
# Chat and Reset Chat buttons.
|
465 |
+
|
466 |
+
col1, col2, col3, col4, col5 = st.columns(5)
|
467 |
+
with col1:
|
468 |
+
button_chat = st.button("Chat")
|
469 |
+
with col5:
|
470 |
+
if st.button("Reset Chat"):
|
471 |
+
st.session_state.panels = []
|
472 |
+
user_input = False
|
473 |
+
#########################################################################################################
|
474 |
+
|
475 |
+
# Reverse the structure/way of displaying messages.
|
476 |
+
|
477 |
+
if "panels" not in st.session_state:
|
478 |
+
st.session_state.panels = []
|
479 |
+
|
480 |
+
#########################################################################################################
|
481 |
+
|
482 |
+
# If there is a user input or the chat button was clicked AND the input is not empty.
|
483 |
+
|
484 |
+
if (user_input or button_chat) and user_input != "":
|
485 |
+
# Context management.
|
486 |
+
prompt = user_input
|
487 |
+
context.append({"role": "user", "content": f"{prompt}"})
|
488 |
+
|
489 |
+
# OpenAI gpt-3.5-turbo model inference.
|
490 |
+
with st.spinner(text="Generating Response..."):
|
491 |
+
response = get_completion_from_messages(context)
|
492 |
+
|
493 |
+
# Text to speech model inference.
|
494 |
+
with st.spinner(text="Generating Audio..."):
|
495 |
+
generate_speech(response=response)
|
496 |
+
|
497 |
+
# Context management.
|
498 |
+
context.append({"role": "assistant", "content": f"{response}"})
|
499 |
+
|
500 |
+
# Appending the newly generated messages into the structure/way of displaying messages.
|
501 |
+
st.session_state.panels.append(("User:", prompt))
|
502 |
+
st.session_state.panels.append(("Assistant:", response))
|
503 |
+
|
504 |
+
#########################################################################################################
|
505 |
+
|
506 |
+
# Display/Output messages.
|
507 |
+
|
508 |
+
with st.expander("Conversation History", expanded=True):
|
509 |
+
for role, content in reversed(st.session_state.panels):
|
510 |
+
# User.
|
511 |
+
if role == "User:":
|
512 |
+
user = f"""<p align="left" style="font-family: monospace; font-size: 1rem;">
|
513 |
+
<b style="color:#dadada">π€{role}</b> {content}</p>"""
|
514 |
+
st.markdown(user, unsafe_allow_html=True)
|
515 |
+
# ChefBot.
|
516 |
+
else:
|
517 |
+
st.audio("audio.flac")
|
518 |
+
assistant = f"""<p align="left" style="font-family: monospace; font-size: 1rem;">
|
519 |
+
<b style="color:#dadada">π¨βπ³{chef}:</b> {content}</p>"""
|
520 |
+
st.markdown(assistant, unsafe_allow_html=True)
|
521 |
+
|
522 |
+
#############################################################################################################
|
523 |
+
except Exception as e:
|
524 |
+
# General exception/error handling.
|
525 |
+
|
526 |
+
st.error(e)
|
527 |
+
|
528 |
+
|
529 |
+
#############################################################################################################################
|
530 |
+
if __name__ == "__main__":
|
531 |
+
main()
|