File size: 11,851 Bytes
c7742ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
#############################################################################################################################
# Filename : app.py
# Description: A Streamlit application to utilize five models back to back
# Models used:
# 1. Visual Question Answering (VQA).
# 2. Fill-Mask.
# 3. Text2text Generation.
# 4. Text Generation.
# 5. Topic.
# Author : Georgios Ioannou
#
# Copyright © 2024 by Georgios Ioannou
#############################################################################################################################
# Import libraries.
import streamlit as st # Build the GUI of the application.
import torch # Load Salesforce/blip model(s) on GPU.
from bertopic import BERTopic # Topic model inference.
from PIL import Image # Open and identify a given image file.
from transformers import (
pipeline,
BlipProcessor,
BlipForQuestionAnswering,
) # VQA model inference.
#############################################################################################################################
# Function to apply local CSS.
def local_css(file_name):
with open(file_name) as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
#############################################################################################################################
# Model 1.
# Model 1 gets input from the user.
# User -> Model 1
# Load the Visual Question Answering (VQA) model directly.
# Using transformers.
@st.cache_resource
def load_model_blip():
blip_processor_base = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
blip_model_base = BlipForQuestionAnswering.from_pretrained(
"Salesforce/blip-vqa-base"
)
# Backup model.
# blip_processor_large = BlipProcessor.from_pretrained("Salesforce/blip-vqa-capfilt-large")
# blip_model_large = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-capfilt-large")
# return blip_processor_large, blip_model_large
return blip_processor_base, blip_model_base
# General function for any Salesforce/blip model(s).
# VQA model.
def generate_answer_blip(processor, model, image, question):
# Prepare image + question.
inputs = processor(images=image, text=question, return_tensors="pt")
generated_ids = model.generate(**inputs, max_length=50)
generated_answer = processor.batch_decode(generated_ids, skip_special_tokens=True)
return generated_answer
# Generate answer from the Salesforce/blip model(s).
# VQA model.
@st.cache_resource
def generate_answer(image, question):
answer_blip_base = generate_answer_blip(
processor=blip_processor_base,
model=blip_model_base,
image=image,
question=question,
)
# answer_blip_large = generate_answer_blip(blip_processor_large, blip_model_large, image, question)
# return answer_blip_large
return answer_blip_base
#############################################################################################################################
# Model 2.
# Model 2 gets input from Model 1.
# User -> Model 1 -> Model 2
@st.cache_resource
def load_model_fill_mask():
return pipeline(task="fill-mask", model="bert-base-uncased")
#############################################################################################################################
# Model 3.
# Model 3 gets input from Model 2.
# User -> Model 1 -> Model 2 -> Model 3
@st.cache_resource
def load_model_text2text_generation():
return pipeline(
task="text2text-generation", model="facebook/blenderbot-400M-distill"
)
#############################################################################################################################
# Model 4.
# Model 4 gets input from Model 3.
# User -> Model 1 -> Model 2 -> Model 3 -> Model 4
@st.cache_resource
def load_model_fill_text_generation():
return pipeline(task="text-generation", model="gpt2")
#############################################################################################################################
# Model 5.
# Model 5 gets input from Model 4.
# User -> Model 1 -> Model 2 -> Model 3 -> Model 4 -> Model 5
@st.cache_resource
def load_model_bertopic1():
return BERTopic.load(path="davanstrien/chat_topics")
@st.cache_resource
def load_model_bertopic2():
return BERTopic.load(path="MaartenGr/BERTopic_ArXiv")
#############################################################################################################################
# Page title and favicon.
st.set_page_config(page_title="Visual Question Answering", page_icon="❓")
#############################################################################################################################
# Load the Salesforce/blip model directly.
if torch.cuda.is_available():
device = torch.device("cuda")
# elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
# device = torch.device("mps")
else:
device = torch.device("cpu")
blip_processor_base, blip_model_base = load_model_blip()
blip_model_base.to(device)
#############################################################################################################################
# Main function to create the Streamlit web application.
#
# 5 MODEL INFERENCES.
# User Input = Image + Question About The Image.
# User -> Model 1 -> Model 2 -> Model 3 -> Model 4 -> Model 5
def main():
try:
#####################################################################################################################
# Load CSS.
local_css("styles/style.css")
#####################################################################################################################
# Title.
title = f"""<h1 align="center" style="font-family: monospace; font-size: 2.1rem; margin-top: -4rem">
Georgios Ioannou's Visual Question Answering</h1>"""
st.markdown(title, unsafe_allow_html=True)
# st.title("ChefBot - Automated Recipe Assistant")
#####################################################################################################################
# Subtitle.
subtitle = f"""<h2 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: -2rem">
CUNY Tech Prep Tutorial 4</h2>"""
st.markdown(subtitle, unsafe_allow_html=True)
#####################################################################################################################
# Image.
image = "./ctp.png"
left_co, cent_co, last_co = st.columns(3)
with cent_co:
st.image(image=image)
#####################################################################################################################
# User input (Image).
image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if image is not None:
bytes_data = image.getvalue()
with open(image.name, "wb") as file:
file.write(bytes_data)
st.image(image, caption="Uploaded Image.", use_column_width=True)
raw_image = Image.open(image.name).convert("RGB")
# User input (Question).
question = st.text_input("What's your question?")
#############################################################################################################
if question != "":
# Model 1.
with st.spinner(
text="VQA inference..."
): # Spinner to keep the application interactive.
# Model inference.
answer = generate_answer(raw_image, question)[0]
st.success(f"VQA: {answer}")
bbu_pipeline = load_model_fill_mask()
text = (
"I love " + answer + " and I would like to know how to [MASK]."
)
#########################################################################################################
# Model 2.
with st.spinner(
text="Fill-Mask inference..."
): # Spinner to keep the application interactive.
# Model inference.
bbu_pipeline_output = bbu_pipeline(text)
bbu_output = bbu_pipeline_output[0]["sequence"]
st.success(f"Fill-Mask: {bbu_output}")
facebook_pipeline = load_model_text2text_generation()
utterance = bbu_output
#########################################################################################################
# Model 3.
with st.spinner(
text="Text2text Generation inference..."
): # Spinner to keep the application interactive.
# Model inference.
facebook_pipeline_output = facebook_pipeline(utterance)
facebook_output = facebook_pipeline_output[0]["generated_text"]
st.success(f"Text2text Generation: {facebook_output}")
gpt2_pipeline = load_model_fill_text_generation()
#########################################################################################################
# Model 4.
with st.spinner(
text="Fill Text Generation inference..."
): # Spinner to keep the application interactive.
# Model inference.
gpt2_pipeline_output = gpt2_pipeline(facebook_output)
gpt2_output = gpt2_pipeline_output[0]["generated_text"]
st.success(f"Fill Text Generation: {gpt2_output}")
#########################################################################################################
# Model 5.
topic_model_1 = load_model_bertopic1()
topic, prob = topic_model_1.transform(gpt2_pipeline_output)
topic_model_1_output = topic_model_1.get_topic_info(topic[0])[
"Representation"
][0]
st.success(
f"Topic(s) from davanstrien/chat_topics: {topic_model_1_output}"
)
topic_model_2 = load_model_bertopic2()
topic, prob = topic_model_2.transform(gpt2_pipeline_output)
topic_model_2_output = topic_model_2.get_topic_info(topic[0])[
"Representation"
][0]
st.success(
f"Topic(s) from MaartenGr/BERTopic_ArXiv: {topic_model_1_output}"
)
except Exception as e:
# General exception/error handling.
st.error(e)
# GitHub repository of author.
st.markdown(
f"""
<p align="center" style="font-family: monospace; color: #FAF9F6; font-size: 1rem;"><b> Check out our
<a href="https://github.com/GeorgiosIoannouCoder/" style="color: #FAF9F6;"> GitHub repository</a></b>
</p>
""",
unsafe_allow_html=True,
)
#############################################################################################################################
if __name__ == "__main__":
main()
|