Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from huggingface_hub import InferenceClient, AsyncInferenceClient
|
3 |
+
from PIL import Image
|
4 |
+
from pathlib import Path
|
5 |
+
import os, subprocess
|
6 |
+
|
7 |
+
st.set_page_config(page_title='HG Inference Client Demo',layout="wide")
|
8 |
+
# Cache the header of the app to prevent re-rendering on each load
|
9 |
+
@st.cache_resource
|
10 |
+
def display_app_header():
|
11 |
+
"""Display the header of the Streamlit app."""
|
12 |
+
st.title("1️⃣ HG Inference Client Demo 📊 ")
|
13 |
+
st.subheader("Just a little demontstrator")
|
14 |
+
# Display the header of the app
|
15 |
+
display_app_header()
|
16 |
+
|
17 |
+
# UI sidebar parameters ####################################
|
18 |
+
st.sidebar.header("Loging")
|
19 |
+
if hg_token :=st.sidebar.text_input('Enter your HG token'):
|
20 |
+
try:
|
21 |
+
subprocess.check_call(["huggingface-cli", "login", "--token", hg_token])
|
22 |
+
st.sidebar.info('Logged', icon="ℹ️")
|
23 |
+
except subprocess.CalledProcessError:
|
24 |
+
st.sidebar.error('Error with token, try again', icon="⚠️")
|
25 |
+
else:
|
26 |
+
st.sidebar.warning("enter your token")
|
27 |
+
|
28 |
+
st.sidebar.header("Model")
|
29 |
+
selected_model = st.sidebar.radio(
|
30 |
+
"Choose a model or let the client do it",
|
31 |
+
["Not choose", "Choose"]
|
32 |
+
)
|
33 |
+
if selected_model == "Choose":
|
34 |
+
model = st.sidebar.text_input('Enter a model name. ex : facebook/fastspeech2-en-ljspeech')
|
35 |
+
else:
|
36 |
+
model = None
|
37 |
+
|
38 |
+
st.sidebar.header("Task")
|
39 |
+
dict_hg_tasks = {
|
40 |
+
"Automatic Speech Recognition":"automatic_speech_recognition",
|
41 |
+
"Text-to-Speech (choose model)":"text_to_speech",
|
42 |
+
"Image Classification":"image_classification",
|
43 |
+
"Image Segmentation":"image_segmentation",
|
44 |
+
"Image-to-Text":"image_to_text",
|
45 |
+
"Object Detection":"object_detection",
|
46 |
+
"Text-to-Image":"text_to_image",
|
47 |
+
"Visual Question Answering":"visual_question_answering",
|
48 |
+
"Conversational":"conversational",
|
49 |
+
"Feature Extraction":"feature_extraction",
|
50 |
+
"Question Answering":"question_answering",
|
51 |
+
"Summarization":"summarization",
|
52 |
+
"Text Classification":"text_classification",
|
53 |
+
"Text Generation":"text_generation",
|
54 |
+
"Token Classification":"token_classification",
|
55 |
+
"Translation (choose model)":"translation",
|
56 |
+
}
|
57 |
+
|
58 |
+
dict_hg_tasks_params = {
|
59 |
+
"automatic_speech_recognition": {
|
60 |
+
"input": "upload,url",
|
61 |
+
"output": "text",
|
62 |
+
"prompt": False,
|
63 |
+
"context": False
|
64 |
+
},
|
65 |
+
"text_to_speech": {
|
66 |
+
"input": "text",
|
67 |
+
"output": "audio",
|
68 |
+
"prompt": False,
|
69 |
+
"context": False
|
70 |
+
},
|
71 |
+
"image_classification": {
|
72 |
+
"input": "upload,url",
|
73 |
+
"output": "image,text",
|
74 |
+
"prompt": False,
|
75 |
+
"context": False
|
76 |
+
},
|
77 |
+
"image_segmentation": {
|
78 |
+
"input": "upload,url",
|
79 |
+
"output": "image,text",
|
80 |
+
"prompt": False,
|
81 |
+
"context": False
|
82 |
+
},
|
83 |
+
"image_to_text": {
|
84 |
+
"input": "upload,url",
|
85 |
+
"output": "image,text",
|
86 |
+
"prompt": False,
|
87 |
+
"context": False
|
88 |
+
},
|
89 |
+
"object_detection": {
|
90 |
+
"input": "upload,url",
|
91 |
+
"output": "image,text",
|
92 |
+
"prompt": False,
|
93 |
+
"context": False
|
94 |
+
},
|
95 |
+
"text_to_image": {
|
96 |
+
"input": "text",
|
97 |
+
"output": "image",
|
98 |
+
"prompt": False,
|
99 |
+
"context": False
|
100 |
+
},
|
101 |
+
"visual_question_answering": {
|
102 |
+
"input": "upload,url",
|
103 |
+
"output": "image,text",
|
104 |
+
"prompt": True,
|
105 |
+
"context": False
|
106 |
+
},
|
107 |
+
"image_to_image": {
|
108 |
+
"input": "upload,url",
|
109 |
+
"output": "image,text",
|
110 |
+
"prompt": True,
|
111 |
+
"context": False
|
112 |
+
},
|
113 |
+
"feature_extraction": {
|
114 |
+
"input": "text",
|
115 |
+
"output": "text",
|
116 |
+
"prompt": False,
|
117 |
+
"context": False
|
118 |
+
},
|
119 |
+
"conversational": {
|
120 |
+
"input": "text",
|
121 |
+
"output": "text",
|
122 |
+
"prompt": False,
|
123 |
+
"context": False
|
124 |
+
},
|
125 |
+
"question_answering": {
|
126 |
+
"input": None,
|
127 |
+
"output": "text",
|
128 |
+
"prompt": True,
|
129 |
+
"context": True
|
130 |
+
},
|
131 |
+
"text_classification": {
|
132 |
+
"input": "text",
|
133 |
+
"output": "text",
|
134 |
+
"prompt": False,
|
135 |
+
"context": False
|
136 |
+
},
|
137 |
+
"token_classification": {
|
138 |
+
"input": "text",
|
139 |
+
"output": "text",
|
140 |
+
"prompt": False,
|
141 |
+
"context": False
|
142 |
+
},
|
143 |
+
"text_generation": {
|
144 |
+
"input": "text",
|
145 |
+
"output": "text",
|
146 |
+
"prompt": False,
|
147 |
+
"context": False
|
148 |
+
},
|
149 |
+
"text_classification": {
|
150 |
+
"input": "text",
|
151 |
+
"output": "text",
|
152 |
+
"prompt": False,
|
153 |
+
"context": False
|
154 |
+
},
|
155 |
+
"translation": {
|
156 |
+
"input": "text",
|
157 |
+
"output": "text",
|
158 |
+
"prompt": False,
|
159 |
+
"context": False
|
160 |
+
},
|
161 |
+
"summarization": {
|
162 |
+
"input": "text",
|
163 |
+
"output": "text",
|
164 |
+
"prompt": False,
|
165 |
+
"context": False
|
166 |
+
},
|
167 |
+
}
|
168 |
+
selected_task = st.sidebar.radio(
|
169 |
+
"Choose the task you want to do", # see https://huggingface.co/docs/huggingface_hub/guides/inference"
|
170 |
+
dict_hg_tasks.keys()
|
171 |
+
)
|
172 |
+
st.write(f"The current selected task is : {dict_hg_tasks[selected_task]}")
|
173 |
+
with st.sidebar.expander("tasks documentation"):
|
174 |
+
st.write("https://huggingface.co/docs/huggingface_hub/package_reference/inference_client")
|
175 |
+
|
176 |
+
# functions ########################################
|
177 |
+
cwd = os.getcwd()
|
178 |
+
def get_input(upload,url,text):
|
179 |
+
if upload is not None:
|
180 |
+
return upload
|
181 |
+
else:
|
182 |
+
if url:
|
183 |
+
return url
|
184 |
+
elif text:
|
185 |
+
return text
|
186 |
+
return None # Default return if neither upload nor url is provided
|
187 |
+
|
188 |
+
def display_inputs(task):
|
189 |
+
if dict_hg_tasks_params[task]["input"] == "upload,url":
|
190 |
+
return st.file_uploader("Choose a file"),st.text_input("or enter a file url"),""
|
191 |
+
elif dict_hg_tasks_params[task]["input"] == "text":
|
192 |
+
return None,"",st.text_input("Enter a text")
|
193 |
+
else:
|
194 |
+
return None,"",""
|
195 |
+
|
196 |
+
def display_prompt(task):
|
197 |
+
if dict_hg_tasks_params[task]["prompt"] is True:
|
198 |
+
return st.text_input("Enter a question")
|
199 |
+
return None
|
200 |
+
|
201 |
+
def display_context(task):
|
202 |
+
if dict_hg_tasks_params[task]["context"] is True:
|
203 |
+
return st.text_area("Enter a context")
|
204 |
+
return None
|
205 |
+
|
206 |
+
# UI main client ####################################
|
207 |
+
|
208 |
+
if selected_task :
|
209 |
+
response = None
|
210 |
+
task = dict_hg_tasks[selected_task]
|
211 |
+
if model:
|
212 |
+
client = InferenceClient(model=model)
|
213 |
+
else:
|
214 |
+
client = InferenceClient()
|
215 |
+
uploaded_input,url_input,text_input = display_inputs(task)
|
216 |
+
prompt_input = display_prompt(task)
|
217 |
+
context_input = display_context(task)
|
218 |
+
if get_input(uploaded_input,url_input,text_input):
|
219 |
+
input = get_input(uploaded_input,url_input,text_input)
|
220 |
+
response = getattr(client, task)(input)
|
221 |
+
elif prompt_input:
|
222 |
+
if context_input is not None:
|
223 |
+
response = getattr(client, task)(question=prompt_input,context=context_input)
|
224 |
+
else:
|
225 |
+
response = getattr(client, task)(input,prompt=prompt_input)
|
226 |
+
if response is not None:
|
227 |
+
col1,col2 = st.columns(2)
|
228 |
+
with col1:
|
229 |
+
if "text" in dict_hg_tasks_params[task]["output"]:
|
230 |
+
st.write(response)
|
231 |
+
elif "audio" in dict_hg_tasks_params[task]["output"]:
|
232 |
+
Path(os.path.join(cwd,"audio.flac")).write_bytes(response)
|
233 |
+
st.audio(os.path.join(cwd,"audio.flac"))
|
234 |
+
with col2:
|
235 |
+
if dict_hg_tasks_params[task]["output"] == "image,text":
|
236 |
+
image = Image.open(input)
|
237 |
+
st.image(image)
|
238 |
+
elif dict_hg_tasks_params[task]["output"] == "image":
|
239 |
+
response.save(os.path.join(cwd,"generated_image.png"))
|
240 |
+
image = Image.open(os.path.join(cwd,"generated_image.png"))
|
241 |
+
st.image(image)
|
242 |
+
|