Spaces:
Sleeping
Sleeping
File size: 9,825 Bytes
861eb71 d8dadfc 861eb71 d8dadfc 861eb71 d8dadfc 861eb71 d8dadfc 861eb71 d8dadfc 861eb71 d8dadfc 861eb71 d8dadfc 861eb71 d8dadfc 861eb71 d8dadfc 861eb71 d8dadfc 861eb71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
# remote_whisper.py
import sys
import time
import logging
import os
from wave import Wave_read
import requests
import json
import base64
import numpy as np
import soundfile as sf
import io
import librosa
# Import the necessary components from whisper_online.py
from libs.whisper_streaming.whisper_online import (
ASRBase,
OnlineASRProcessor,
VACOnlineASRProcessor,
add_shared_args,
asr_factory as original_asr_factory,
set_logging,
create_tokenizer,
load_audio,
load_audio_chunk, OpenaiApiASR,
)
from model import dict_to_segment, get_raw_words_from_segments
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s: %(message)s',
handlers=[logging.StreamHandler(sys.stdout)], force=True)
logger = logging.getLogger(__name__)
def convert_to_mono_16k(input_wav: str, output_wav: str) -> None:
"""
Converts any .wav file to mono 16 kHz.
Args:
input_wav (str): Path to the input .wav file.
output_wav (str): Path to save the output .wav file with mono 16 kHz.
"""
# Step 1: Load the audio file with librosa
audio_data, original_sr = librosa.load(input_wav, sr=None, mono=False) # Load at original sampling rate
logger.info("Loaded audio with shape: %s, original sampling rate: %d" % (audio_data.shape, original_sr))
# Step 2: If the audio has multiple channels, average them to make it mono
if audio_data.ndim > 1:
audio_data = librosa.to_mono(audio_data)
# Step 3: Resample the audio to 16 kHz
target_sr = 16000
resampled_audio = librosa.resample(audio_data, orig_sr=original_sr, target_sr=target_sr)
# Step 4: Save the resampled audio as a .wav file in mono at 16 kHz
sf.write(output_wav, resampled_audio, target_sr)
logger.info(f"Converted audio saved to {output_wav}")
# Example usage:
# convert_to_mono_16k('input_audio.wav', 'output_audio_16k_mono.wav')
# Define the RemoteFasterWhisperASR class
class RemoteFasterWhisperASR(ASRBase):
"""Uses a remote FasterWhisper model via WebSocket."""
sep = "" # Same as FasterWhisperASR
def load_model(self, *args, **kwargs):
import websocket
self.ws = websocket.WebSocket()
# Replace with your server address
server_address = "ws://localhost:8000/ws_transcribe_streaming" # Update with the actual server address
self.ws.connect(server_address)
logger.info(f"Connected to remote ASR server at {server_address}")
def transcribe(self, audio, init_prompt=""):
# Convert audio data to WAV bytes
if isinstance(audio, str):
# If audio is a filename, read the file
with open(audio, 'rb') as f:
audio_bytes = f.read()
elif isinstance(audio, np.ndarray):
# Write audio data to a buffer in WAV format
audio_bytes_io = io.BytesIO()
sf.write(audio_bytes_io, audio, samplerate=16000, format='WAV', subtype='PCM_16')
audio_bytes = audio_bytes_io.getvalue()
else:
raise ValueError("Unsupported audio input type")
# Encode to base64
audio_b64 = base64.b64encode(audio_bytes).decode('utf-8')
data = {
'audio': audio_b64,
'init_prompt': init_prompt
}
self.ws.send(json.dumps(data))
response = self.ws.recv()
segments = json.loads(response)
segments = [dict_to_segment(s) for s in segments]
logger.info(get_raw_words_from_segments(segments))
return segments
def ts_words(self, segments):
o = []
for segment in segments:
for word in segment.words:
if segment.no_speech_prob > 0.9:
continue
# not stripping the spaces -- should not be merged with them!
w = word.word
t = (word.start, word.end, w)
o.append(t)
return o
def segments_end_ts(self, res):
return [s.end for s in res]
def use_vad(self):
self.transcribe_kargs["vad_filter"] = True
def set_translate_task(self):
self.transcribe_kargs["task"] = "translate"
# Update asr_factory to include RemoteFasterWhisperASR
def asr_factory(args, logfile=sys.stderr):
"""
Creates and configures an ASR and Online ASR Processor instance based on the specified backend and arguments.
"""
backend = args.backend
if backend == "openai-api":
logger.debug("Using OpenAI API.")
asr = OpenaiApiASR(lan=args.lan)
elif backend == "remote-faster-whisper":
asr_cls = RemoteFasterWhisperASR
else:
# Use the original asr_factory for other backends
return original_asr_factory(args, logfile)
# For RemoteFasterWhisperASR
t = time.time()
logger.info(f"Initializing Remote Faster Whisper ASR for language '{args.lan}'...")
asr = asr_cls(modelsize=args.model, lan=args.lan, cache_dir=args.model_cache_dir, model_dir=args.model_dir)
e = time.time()
logger.info(f"Initialization done. It took {round(e - t, 2)} seconds.")
# Apply common configurations
if getattr(args, 'vad', False): # Checks if VAD argument is present and True
logger.info("Setting VAD filter")
asr.use_vad()
language = args.lan
if args.task == "translate":
asr.set_translate_task()
tgt_language = "en" # Whisper translates into English
else:
tgt_language = language # Whisper transcribes in this language
# Create the tokenizer
if args.buffer_trimming == "sentence":
tokenizer = create_tokenizer(tgt_language)
else:
tokenizer = None
# Create the OnlineASRProcessor
if args.vac:
online = VACOnlineASRProcessor(
args.min_chunk_size,
asr,
tokenizer,
logfile=logfile,
buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec)
)
else:
online = OnlineASRProcessor(
asr,
tokenizer,
logfile=logfile,
buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec)
)
return asr, online
# Now, write the main function that uses RemoteFasterWhisperASR
def main():
import argparse
import sys
import numpy as np
import io
import soundfile as sf
import wave
# Download the audio file if not already present
AUDIO_FILE_URL = "https://raw.githubusercontent.com/AshDavid12/runpod-serverless-forked/main/test_hebrew.wav"
audio_file_path = "test_hebrew.wav"
mono16k_audio_file_path = "mono16k." + audio_file_path
if not os.path.exists(audio_file_path):
response = requests.get(AUDIO_FILE_URL)
with open(audio_file_path, 'wb') as f:
f.write(response.content)
if not os.path.exists(mono16k_audio_file_path):
convert_to_mono_16k(audio_file_path, mono16k_audio_file_path)
# Set up arguments
class Args:
def __init__(self):
self.audio_path = mono16k_audio_file_path
self.lan = 'he'
self.model = None # Not used in RemoteFasterWhisperASR
self.model_cache_dir = None
self.model_dir = None
self.backend = 'remote-faster-whisper'
self.task = 'transcribe'
self.vad = False
self.vac = True # Use VAC as default
self.buffer_trimming = 'segment'
self.buffer_trimming_sec = 15
self.min_chunk_size = 1.0
self.vac_chunk_size = 0.04
self.start_at = 0.0
self.offline = False
self.comp_unaware = False
self.log_level = 'DEBUG'
args = Args()
# Set up logging
set_logging(args, logger)
audio_path = args.audio_path
SAMPLING_RATE = 16000
duration = len(load_audio(audio_path)) / SAMPLING_RATE
logger.info("Audio duration is: %2.2f seconds" % duration)
asr, online = asr_factory(args, logfile=sys.stderr)
if args.vac:
min_chunk = args.vac_chunk_size
else:
min_chunk = args.min_chunk_size
# Load the audio into the LRU cache before we start the timer
a = load_audio_chunk(audio_path, 0, 1)
# Warm up the ASR because the very first transcribe takes more time
asr.transcribe(a)
beg = args.start_at
start = time.time() - beg
def output_transcript(o, now=None):
# Output format in stdout is like:
# 4186.3606 0 1720 Takhle to je
# - The first three numbers are:
# - Emission time from the beginning of processing, in milliseconds
# - Begin and end timestamp of the text segment, as estimated by Whisper model
# - The next words: segment transcript
if now is None:
now = time.time() - start
if o[0] is not None:
print("%1.4f %1.0f %1.0f %s" % (now * 1000, o[0] * 1000, o[1] * 1000, o[2]), flush=True)
else:
# No text, so no output
pass
end = 0
while True:
now = time.time() - start
if now < end + min_chunk:
time.sleep(min_chunk + end - now)
end = time.time() - start
a = load_audio_chunk(audio_path, beg, end)
beg = end
online.insert_audio_chunk(a)
try:
o = online.process_iter()
except AssertionError as e:
logger.error(f"Assertion error: {e}")
pass
else:
output_transcript(o)
now = time.time() - start
logger.debug(f"## Last processed {end:.2f} s, now is {now:.2f}, latency is {now - end:.2f}")
if end >= duration:
break
now = None
o = online.finish()
output_transcript(o, now=now)
if __name__ == "__main__":
main()
|