File size: 9,825 Bytes
861eb71
 
 
 
 
 
d8dadfc
 
861eb71
 
 
 
 
 
 
 
d8dadfc
 
861eb71
 
 
 
 
 
 
 
 
 
 
 
d8dadfc
861eb71
d8dadfc
 
861eb71
 
d8dadfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
861eb71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8dadfc
861eb71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8dadfc
861eb71
 
 
 
d8dadfc
861eb71
 
 
 
 
d8dadfc
 
 
861eb71
 
 
d8dadfc
861eb71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# remote_whisper.py

import sys
import time
import logging
import os
from wave import Wave_read

import requests

import json
import base64
import numpy as np
import soundfile as sf
import io

import librosa

# Import the necessary components from whisper_online.py
from libs.whisper_streaming.whisper_online import (
    ASRBase,
    OnlineASRProcessor,
    VACOnlineASRProcessor,
    add_shared_args,
    asr_factory as original_asr_factory,
    set_logging,
    create_tokenizer,
    load_audio,
    load_audio_chunk, OpenaiApiASR,
)
from model import dict_to_segment, get_raw_words_from_segments

logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s: %(message)s',
                    handlers=[logging.StreamHandler(sys.stdout)], force=True)
logger = logging.getLogger(__name__)



def convert_to_mono_16k(input_wav: str, output_wav: str) -> None:
    """
    Converts any .wav file to mono 16 kHz.

    Args:
        input_wav (str): Path to the input .wav file.
        output_wav (str): Path to save the output .wav file with mono 16 kHz.
    """
    # Step 1: Load the audio file with librosa
    audio_data, original_sr = librosa.load(input_wav, sr=None, mono=False)  # Load at original sampling rate
    logger.info("Loaded audio with shape: %s, original sampling rate: %d" % (audio_data.shape, original_sr))

    # Step 2: If the audio has multiple channels, average them to make it mono
    if audio_data.ndim > 1:
        audio_data = librosa.to_mono(audio_data)

    # Step 3: Resample the audio to 16 kHz
    target_sr = 16000
    resampled_audio = librosa.resample(audio_data, orig_sr=original_sr, target_sr=target_sr)

    # Step 4: Save the resampled audio as a .wav file in mono at 16 kHz
    sf.write(output_wav, resampled_audio, target_sr)

    logger.info(f"Converted audio saved to {output_wav}")


# Example usage:
# convert_to_mono_16k('input_audio.wav', 'output_audio_16k_mono.wav')


# Define the RemoteFasterWhisperASR class
class RemoteFasterWhisperASR(ASRBase):
    """Uses a remote FasterWhisper model via WebSocket."""
    sep = ""  # Same as FasterWhisperASR

    def load_model(self, *args, **kwargs):
        import websocket
        self.ws = websocket.WebSocket()
        # Replace with your server address
        server_address = "ws://localhost:8000/ws_transcribe_streaming"  # Update with the actual server address
        self.ws.connect(server_address)
        logger.info(f"Connected to remote ASR server at {server_address}")

    def transcribe(self, audio, init_prompt=""):
        # Convert audio data to WAV bytes
        if isinstance(audio, str):
            # If audio is a filename, read the file
            with open(audio, 'rb') as f:
                audio_bytes = f.read()
        elif isinstance(audio, np.ndarray):
            # Write audio data to a buffer in WAV format
            audio_bytes_io = io.BytesIO()
            sf.write(audio_bytes_io, audio, samplerate=16000, format='WAV', subtype='PCM_16')
            audio_bytes = audio_bytes_io.getvalue()
        else:
            raise ValueError("Unsupported audio input type")

        # Encode to base64
        audio_b64 = base64.b64encode(audio_bytes).decode('utf-8')
        data = {
            'audio': audio_b64,
            'init_prompt': init_prompt
        }
        self.ws.send(json.dumps(data))
        response = self.ws.recv()
        segments = json.loads(response)
        segments = [dict_to_segment(s) for s in segments]
        logger.info(get_raw_words_from_segments(segments))
        return segments

    def ts_words(self, segments):
        o = []
        for segment in segments:
            for word in segment.words:
                if segment.no_speech_prob > 0.9:
                    continue
                # not stripping the spaces -- should not be merged with them!
                w = word.word
                t = (word.start, word.end, w)
                o.append(t)
        return o

    def segments_end_ts(self, res):
        return [s.end for s in res]

    def use_vad(self):
        self.transcribe_kargs["vad_filter"] = True

    def set_translate_task(self):
        self.transcribe_kargs["task"] = "translate"

# Update asr_factory to include RemoteFasterWhisperASR
def asr_factory(args, logfile=sys.stderr):
    """
    Creates and configures an ASR and Online ASR Processor instance based on the specified backend and arguments.
    """
    backend = args.backend
    if backend == "openai-api":
        logger.debug("Using OpenAI API.")
        asr = OpenaiApiASR(lan=args.lan)
    elif backend == "remote-faster-whisper":
        asr_cls = RemoteFasterWhisperASR
    else:
        # Use the original asr_factory for other backends
        return original_asr_factory(args, logfile)

    # For RemoteFasterWhisperASR
    t = time.time()
    logger.info(f"Initializing Remote Faster Whisper ASR for language '{args.lan}'...")
    asr = asr_cls(modelsize=args.model, lan=args.lan, cache_dir=args.model_cache_dir, model_dir=args.model_dir)
    e = time.time()
    logger.info(f"Initialization done. It took {round(e - t, 2)} seconds.")

    # Apply common configurations
    if getattr(args, 'vad', False):  # Checks if VAD argument is present and True
        logger.info("Setting VAD filter")
        asr.use_vad()

    language = args.lan
    if args.task == "translate":
        asr.set_translate_task()
        tgt_language = "en"  # Whisper translates into English
    else:
        tgt_language = language  # Whisper transcribes in this language

    # Create the tokenizer
    if args.buffer_trimming == "sentence":
        tokenizer = create_tokenizer(tgt_language)
    else:
        tokenizer = None

    # Create the OnlineASRProcessor
    if args.vac:
        online = VACOnlineASRProcessor(
            args.min_chunk_size,
            asr,
            tokenizer,
            logfile=logfile,
            buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec)
        )
    else:
        online = OnlineASRProcessor(
            asr,
            tokenizer,
            logfile=logfile,
            buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec)
        )

    return asr, online

# Now, write the main function that uses RemoteFasterWhisperASR
def main():
    import argparse
    import sys
    import numpy as np
    import io
    import soundfile as sf
    import wave

    # Download the audio file if not already present
    AUDIO_FILE_URL = "https://raw.githubusercontent.com/AshDavid12/runpod-serverless-forked/main/test_hebrew.wav"
    audio_file_path = "test_hebrew.wav"
    mono16k_audio_file_path = "mono16k." + audio_file_path
    if not os.path.exists(audio_file_path):
        response = requests.get(AUDIO_FILE_URL)
        with open(audio_file_path, 'wb') as f:
            f.write(response.content)

    if not os.path.exists(mono16k_audio_file_path):
        convert_to_mono_16k(audio_file_path, mono16k_audio_file_path)

    # Set up arguments
    class Args:
        def __init__(self):
            self.audio_path = mono16k_audio_file_path
            self.lan = 'he'
            self.model = None  # Not used in RemoteFasterWhisperASR
            self.model_cache_dir = None
            self.model_dir = None
            self.backend = 'remote-faster-whisper'
            self.task = 'transcribe'
            self.vad = False
            self.vac = True  # Use VAC as default
            self.buffer_trimming = 'segment'
            self.buffer_trimming_sec = 15
            self.min_chunk_size = 1.0
            self.vac_chunk_size = 0.04
            self.start_at = 0.0
            self.offline = False
            self.comp_unaware = False
            self.log_level = 'DEBUG'

    args = Args()

    # Set up logging
    set_logging(args, logger)

    audio_path = args.audio_path

    SAMPLING_RATE = 16000

    duration = len(load_audio(audio_path)) / SAMPLING_RATE
    logger.info("Audio duration is: %2.2f seconds" % duration)

    asr, online = asr_factory(args, logfile=sys.stderr)
    if args.vac:
        min_chunk = args.vac_chunk_size
    else:
        min_chunk = args.min_chunk_size

    # Load the audio into the LRU cache before we start the timer
    a = load_audio_chunk(audio_path, 0, 1)

    # Warm up the ASR because the very first transcribe takes more time
    asr.transcribe(a)

    beg = args.start_at
    start = time.time() - beg

    def output_transcript(o, now=None):
        # Output format in stdout is like:
        # 4186.3606 0 1720 Takhle to je
        # - The first three numbers are:
        #   - Emission time from the beginning of processing, in milliseconds
        #   - Begin and end timestamp of the text segment, as estimated by Whisper model
        # - The next words: segment transcript
        if now is None:
            now = time.time() - start
        if o[0] is not None:
            print("%1.4f %1.0f %1.0f %s" % (now * 1000, o[0] * 1000, o[1] * 1000, o[2]), flush=True)
        else:
            # No text, so no output
            pass

    end = 0
    while True:
        now = time.time() - start
        if now < end + min_chunk:
            time.sleep(min_chunk + end - now)
        end = time.time() - start
        a = load_audio_chunk(audio_path, beg, end)
        beg = end
        online.insert_audio_chunk(a)

        try:
            o = online.process_iter()
        except AssertionError as e:
            logger.error(f"Assertion error: {e}")
            pass
        else:
            output_transcript(o)
        now = time.time() - start
        logger.debug(f"## Last processed {end:.2f} s, now is {now:.2f}, latency is {now - end:.2f}")

        if end >= duration:
            break
    now = None

    o = online.finish()
    output_transcript(o, now=now)

if __name__ == "__main__":
    main()