Spaces:
Sleeping
Sleeping
File size: 10,826 Bytes
bdd9100 b3935fd 47058ca 5a62402 bdd9100 ebaaf9b bdd9100 40cde13 9ccc5b5 ebaaf9b bdd9100 92ce07c ebaaf9b 7380009 40cde13 b85baaf 9ccc5b5 5a62402 e37aac1 bdd9100 40cde13 7380009 bdd9100 40cde13 bdd9100 40cde13 8e3c59e bdd9100 40cde13 b3935fd bdd9100 b3935fd 5a62402 47058ca 9ccc5b5 91062af 47058ca 5a62402 ebaaf9b 5a62402 b85baaf 5a62402 ebaaf9b 9ccc5b5 5a62402 ebaaf9b 5a62402 ebaaf9b 5a62402 ebaaf9b 5a62402 153f836 5a62402 4c42c49 ebaaf9b c72d2a4 ebaaf9b a94388a 5a62402 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import base64
import faster_whisper
import tempfile
import numpy as np
import torch
import time
import requests
import logging
from fastapi import FastAPI, HTTPException, WebSocket, WebSocketDisconnect
import websockets
from pydantic import BaseModel
from typing import Optional
import sys
import asyncio
# Configure logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s: %(message)s',
handlers=[logging.StreamHandler(sys.stdout)], force=True)
logger = logging.getLogger(__name__)
#logging.getLogger("asyncio").setLevel(logging.DEBUG)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
logging.info(f'Device selected: {device}')
model_name = 'ivrit-ai/faster-whisper-v2-d4'
logging.info(f'Loading model: {model_name}')
model = faster_whisper.WhisperModel(model_name, device=device)
logging.info('Model loaded successfully')
# Maximum data size: 200MB
MAX_PAYLOAD_SIZE = 200 * 1024 * 1024
logging.info(f'Max payload size set to: {MAX_PAYLOAD_SIZE} bytes')
app = FastAPI()
# class InputData(BaseModel):
# type: str
# data: Optional[str] = None # Used for blob input
# url: Optional[str] = None # Used for url input
#
#
# def download_file(url, max_size_bytes, output_filename, api_key=None):
# """
# Download a file from a given URL with size limit and optional API key.
# """
# logging.debug(f'Starting file download from URL: {url}')
# try:
# headers = {}
# if api_key:
# headers['Authorization'] = f'Bearer {api_key}'
# logging.debug('API key provided, added to headers')
#
# response = requests.get(url, stream=True, headers=headers)
# response.raise_for_status()
#
# file_size = int(response.headers.get('Content-Length', 0))
# logging.info(f'File size: {file_size} bytes')
#
# if file_size > max_size_bytes:
# logging.error(f'File size exceeds limit: {file_size} > {max_size_bytes}')
# return False
#
# downloaded_size = 0
# with open(output_filename, 'wb') as file:
# for chunk in response.iter_content(chunk_size=8192):
# downloaded_size += len(chunk)
# logging.debug(f'Downloaded {downloaded_size} bytes')
# if downloaded_size > max_size_bytes:
# logging.error('Downloaded size exceeds maximum allowed payload size')
# return False
# file.write(chunk)
#
# logging.info(f'File downloaded successfully: {output_filename}')
# return True
#
# except requests.RequestException as e:
# logging.error(f"Error downloading file: {e}")
# return False
@app.get("/")
async def read_root():
return {"message": "This is the Ivrit AI Streaming service."}
# async def transcribe_core_ws(audio_file):
# ret = {'segments': []}
#
# try:
#
# logging.debug(f"Initiating model transcription for file: {audio_file}")
#
# segs, _ = await asyncio.to_thread(model.transcribe, audio_file, language='he', word_timestamps=True)
# logging.info('Transcription completed successfully.')
# except Exception as e:
# logging.error(f"Error during transcription: {e}")
# raise e
#
# # Track the new segments and update the last transcribed time
# for s in segs:
# logging.info(f"Processing segment with start time: {s.start} and end time: {s.end}")
#
# # Only process segments that start after the last transcribed time
# logging.info(f"New segment found starting at {s.start} seconds.")
# words = [{'start': w.start, 'end': w.end, 'word': w.word, 'probability': w.probability} for w in s.words]
#
# seg = {
# 'id': s.id, 'seek': s.seek, 'start': s.start, 'end': s.end, 'text': s.text,
# 'avg_logprob': s.avg_logprob, 'compression_ratio': s.compression_ratio,
# 'no_speech_prob': s.no_speech_prob, 'words': words
# }
# logging.info(f'Adding new transcription segment: {seg}')
# ret['segements'].append(seg)
#
# # Update the last transcribed time to the end of the current segment
#
#
# #logging.info(f"Returning {len(ret['new_segments'])} new segments and updated last transcribed time.")
# return ret
import tempfile
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
"""WebSocket endpoint to handle client connections."""
await websocket.accept()
client_ip = websocket.client.host
logger.info(f"Client connected: {client_ip}")
sys.stdout.flush()
try:
await process_audio_stream(websocket)
except WebSocketDisconnect:
logger.info(f"Client disconnected: {client_ip}")
except Exception as e:
logger.error(f"Unexpected error: {e}")
await websocket.close()
async def process_audio_stream(websocket: WebSocket):
"""Continuously receive audio chunks and initiate transcription tasks."""
sampling_rate = 16000
min_chunk_size = 1 # in seconds
audio_buffer = np.array([], dtype=np.float32)
transcription_task = None
chunk_counter = 0
total_bytes_received = 0
while True:
try:
# Receive audio data from client
data = await websocket.receive_bytes()
if not data:
logger.info("No data received, closing connection")
break
chunk_counter += 1
chunk_size = len(data)
total_bytes_received += chunk_size
logger.debug(f"Received chunk {chunk_counter}: {chunk_size} bytes")
audio_chunk = process_received_audio(data)
logger.debug(f"Processed audio chunk {chunk_counter}: {len(audio_chunk)} samples")
audio_buffer = np.concatenate((audio_buffer, audio_chunk))
logger.debug(f"Audio buffer size: {len(audio_buffer)} samples")
except Exception as e:
logger.error(f"Error receiving data: {e}")
break
# Check if enough audio has been buffered
if len(audio_buffer) >= min_chunk_size * sampling_rate:
if transcription_task is None or transcription_task.done():
# Start a new transcription task
logger.info(f"Starting transcription task for {len(audio_buffer)} samples")
transcription_task = asyncio.create_task(
transcribe_and_send(websocket, audio_buffer.copy())
)
audio_buffer = np.array([], dtype=np.float32)
logger.debug("Audio buffer reset after starting transcription task")
async def transcribe_and_send(websocket: WebSocket, audio_data):
"""Run transcription in a separate thread and send the result to the client."""
logger.debug(f"Transcription task started for {len(audio_data)} samples")
transcription_result = await asyncio.to_thread(sync_transcribe_audio, audio_data)
if transcription_result:
try:
# Send the result as JSON
await websocket.send_json(transcription_result)
logger.info("Transcription JSON sent to client")
except Exception as e:
logger.error(f"Error sending transcription: {e}")
else:
logger.warning("No transcription result to send")
def sync_transcribe_audio(audio_data):
"""Synchronously transcribe audio data using the ASR model and format the result."""
try:
logger.info('Starting transcription...')
segments, info = model.transcribe(
audio_data, language="he", beam_size=5, word_timestamps=True
)
logger.info('Transcription completed')
# Build the transcription result as per your requirement
ret = {'segments': []}
for s in segments:
logger.debug(f"Processing segment {s.id} with start time: {s.start} and end time: {s.end}")
# Process words in the segment
words = [{
'start': float(w.start),
'end': float(w.end),
'word': w.word,
'probability': float(w.probability)
} for w in s.words]
seg = {
'id': int(s.id),
'seek': int(s.seek),
'start': float(s.start),
'end': float(s.end),
'text': s.text,
'avg_logprob': float(s.avg_logprob),
'compression_ratio': float(s.compression_ratio),
'no_speech_prob': float(s.no_speech_prob),
'words': words
}
logger.debug(f'Adding new transcription segment: {seg}')
ret['segments'].append(seg)
logger.debug(f"Total segments in transcription result: {len(ret['segments'])}")
return ret
except Exception as e:
logger.error(f"Transcription error: {e}")
return {}
def process_received_audio(data):
"""Convert received bytes into normalized float32 NumPy array."""
logger.debug(f"Processing received audio data of size {len(data)} bytes")
audio_int16 = np.frombuffer(data, dtype=np.int16)
logger.debug(f"Converted to int16 NumPy array with {len(audio_int16)} samples")
audio_float32 = audio_int16.astype(np.float32) / 32768.0 # Normalize to [-1, 1]
logger.debug(f"Normalized audio data to float32 with {len(audio_float32)} samples")
return audio_float32
# @app.websocket("/wtranscribe")
# async def websocket_transcribe(websocket: WebSocket):
# logging.info("New WebSocket connection request received.")
# await websocket.accept()
# logging.info("WebSocket connection established successfully.")
#
# try:
# while True:
# try:
# audio_chunk = await websocket.receive_bytes()
# if not audio_chunk:
# logging.warning("Received empty audio chunk, skipping processing.")
# continue
# with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio_file: ##new temp file for every chunk
# logging.info(f"Temporary audio file created at {temp_audio_file.name}")
# # Receive the next chunk of audio data
#
#
#
# partial_result = await transcribe_core_ws(temp_audio_file.name)
# await websocket.send_json(partial_result)
#
# except WebSocketDisconnect:
# logging.info("WebSocket connection closed by the client.")
# break
#
# except Exception as e:
# logging.error(f"Unexpected error during WebSocket transcription: {e}")
# await websocket.send_json({"error": str(e)})
#
# finally:
# logging.info("Cleaning up and closing WebSocket connection.")
|