Spaces:
Sleeping
Sleeping
File size: 10,458 Bytes
bdd9100 b3935fd 47058ca bdd9100 ebaaf9b bdd9100 40cde13 ebaaf9b bdd9100 ebaaf9b 7380009 40cde13 cf31b20 40cde13 bdd9100 40cde13 7380009 bdd9100 40cde13 bdd9100 40cde13 8e3c59e bdd9100 40cde13 b3935fd bdd9100 b3935fd bdd9100 b3935fd 47058ca bdd9100 40cde13 bdd9100 40cde13 47058ca bdd9100 47058ca bdd9100 40cde13 47058ca bdd9100 40cde13 bdd9100 47058ca bdd9100 40cde13 bdd9100 40cde13 bdd9100 47058ca 40cde13 bdd9100 47058ca bdd9100 40cde13 bdd9100 47058ca 91062af 47058ca bdd9100 91062af bdd9100 40cde13 bdd9100 47058ca bdd9100 40cde13 bdd9100 47058ca bdd9100 40cde13 47058ca bdd9100 40cde13 bdd9100 40cde13 bdd9100 40cde13 bdd9100 40cde13 bdd9100 40cde13 ec5dec0 bdd9100 40cde13 bdd9100 47058ca bdd9100 47058ca bdd9100 40cde13 bdd9100 40cde13 bdd9100 40cde13 bdd9100 963a8a8 bdd9100 47058ca bdd9100 ebaaf9b cf31b20 ebaaf9b cf31b20 ebaaf9b f1bf1b3 ebaaf9b f1bf1b3 ebaaf9b cf31b20 ebaaf9b f1bf1b3 ebaaf9b f1bf1b3 ebaaf9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import base64
import faster_whisper
import tempfile
import torch
import time
import requests
import logging
from fastapi import FastAPI, HTTPException, WebSocket,WebSocketDisconnect
import websockets
from pydantic import BaseModel
from typing import Optional
import asyncio
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
logging.info(f'Device selected: {device}')
model_name = 'ivrit-ai/faster-whisper-v2-d4'
logging.info(f'Loading model: {model_name}')
model = faster_whisper.WhisperModel(model_name, device=device)
logging.info('Model loaded successfully')
# Maximum data size: 200MB
MAX_PAYLOAD_SIZE = 200 * 1024 * 1024
logging.info(f'Max payload size set to: {MAX_PAYLOAD_SIZE} bytes')
app = FastAPI()
class InputData(BaseModel):
type: str
data: Optional[str] = None # Used for blob input
url: Optional[str] = None # Used for url input
def download_file(url, max_size_bytes, output_filename, api_key=None):
"""
Download a file from a given URL with size limit and optional API key.
"""
logging.debug(f'Starting file download from URL: {url}')
try:
headers = {}
if api_key:
headers['Authorization'] = f'Bearer {api_key}'
logging.debug('API key provided, added to headers')
response = requests.get(url, stream=True, headers=headers)
response.raise_for_status()
file_size = int(response.headers.get('Content-Length', 0))
logging.info(f'File size: {file_size} bytes')
if file_size > max_size_bytes:
logging.error(f'File size exceeds limit: {file_size} > {max_size_bytes}')
return False
downloaded_size = 0
with open(output_filename, 'wb') as file:
for chunk in response.iter_content(chunk_size=8192):
downloaded_size += len(chunk)
logging.debug(f'Downloaded {downloaded_size} bytes')
if downloaded_size > max_size_bytes:
logging.error('Downloaded size exceeds maximum allowed payload size')
return False
file.write(chunk)
logging.info(f'File downloaded successfully: {output_filename}')
return True
except requests.RequestException as e:
logging.error(f"Error downloading file: {e}")
return False
@app.get("/")
async def read_root():
return {"message": "This is the Ivrit AI Streaming service."}
@app.post("/transcribe")
async def transcribe(input_data: InputData):
logging.info(f'Received transcription request with data: {input_data}')
datatype = input_data.type
if not datatype:
logging.error('datatype field not provided')
raise HTTPException(status_code=400, detail="datatype field not provided. Should be 'blob' or 'url'.")
if datatype not in ['blob', 'url']:
logging.error(f'Invalid datatype: {datatype}')
raise HTTPException(status_code=400, detail=f"datatype should be 'blob' or 'url', but is {datatype} instead.")
with tempfile.TemporaryDirectory() as d:
audio_file = f'{d}/audio.mp3'
logging.debug(f'Created temporary directory: {d}')
if datatype == 'blob':
if not input_data.data:
logging.error("Missing 'data' for 'blob' input")
raise HTTPException(status_code=400, detail="Missing 'data' for 'blob' input.")
logging.info('Decoding base64 blob data')
mp3_bytes = base64.b64decode(input_data.data)
open(audio_file, 'wb').write(mp3_bytes)
logging.info(f'Audio file written: {audio_file}')
elif datatype == 'url':
if not input_data.url:
logging.error("Missing 'url' for 'url' input")
raise HTTPException(status_code=400, detail="Missing 'url' for 'url' input.")
logging.info(f'Downloading file from URL: {input_data.url}')
success = download_file(input_data.url, MAX_PAYLOAD_SIZE, audio_file, None)
if not success:
logging.error(f"Error downloading data from {input_data.url}")
raise HTTPException(status_code=400, detail=f"Error downloading data from {input_data.url}")
result = transcribe_core(audio_file)
return {"result": result}
def transcribe_core(audio_file):
logging.info('Starting transcription...')
ret = {'segments': []}
segs, _ = model.transcribe(audio_file, language='he', word_timestamps=True)
logging.info('Transcription completed')
for s in segs:
words = [{'start': w.start, 'end': w.end, 'word': w.word, 'probability': w.probability} for w in s.words]
seg = {
'id': s.id, 'seek': s.seek, 'start': s.start, 'end': s.end, 'text': s.text, 'avg_logprob': s.avg_logprob,
'compression_ratio': s.compression_ratio, 'no_speech_prob': s.no_speech_prob, 'words': words
}
logging.info(f'Transcription segment: {seg}')
ret['segments'].append(seg)
return ret
def transcribe_core_ws(audio_file, last_transcribed_time):
"""
Transcribe the audio file and return only the segments that have not been processed yet.
:param audio_file: Path to the growing audio file.
:param last_transcribed_time: The last time (in seconds) that was transcribed.
:return: Newly transcribed segments and the updated last transcribed time.
"""
logging.info(f"Starting transcription for file: {audio_file} from {last_transcribed_time} seconds.")
ret = {'new_segments': []}
new_last_transcribed_time = last_transcribed_time
try:
# Transcribe the entire audio file
logging.debug(f"Initiating model transcription for file: {audio_file}")
segs, _ = model.transcribe(audio_file, language='he', word_timestamps=True)
logging.info('Transcription completed successfully.')
except Exception as e:
logging.error(f"Error during transcription: {e}")
raise e
# Track the new segments and update the last transcribed time
for s in segs:
logging.info(f"Processing segment with start time: {s.start} and end time: {s.end}")
# Only process segments that start after the last transcribed time
if s.start >= last_transcribed_time:
logging.info(f"New segment found starting at {s.start} seconds.")
words = [{'start': w.start, 'end': w.end, 'word': w.word, 'probability': w.probability} for w in s.words]
seg = {
'id': s.id, 'seek': s.seek, 'start': s.start, 'end': s.end, 'text': s.text,
'avg_logprob': s.avg_logprob, 'compression_ratio': s.compression_ratio,
'no_speech_prob': s.no_speech_prob, 'words': words
}
logging.info(f'Adding new transcription segment: {seg}')
ret['new_segments'].append(seg)
# Update the last transcribed time to the end of the current segment
new_last_transcribed_time = max(new_last_transcribed_time, s.end)
logging.debug(f"Updated last transcribed time to: {new_last_transcribed_time} seconds")
#logging.info(f"Returning {len(ret['new_segments'])} new segments and updated last transcribed time.")
return ret, new_last_transcribed_time
import tempfile
@app.websocket("/ws/transcribe")
async def websocket_transcribe(websocket: WebSocket):
logging.info("New WebSocket connection request received.")
await websocket.accept()
logging.info("WebSocket connection established successfully.")
try:
processed_segments = [] # Keeps track of the segments already transcribed
audio_data = bytearray() # Buffer for audio chunks
logging.info("Initialized processed_segments and audio_data buffer.")
# A temporary file to store the growing audio data
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio_file:
logging.info(f"Temporary audio file created at {temp_audio_file.name}")
# Continuously receive and process audio chunks
while True:
try:
logging.info("Waiting to receive the next chunk of audio data from WebSocket.")
# Receive the next chunk of audio data
audio_chunk = await websocket.receive_bytes()
logging.info(f"Received an audio chunk of size {len(audio_chunk)} bytes.")
if not audio_chunk:
logging.warning("Received empty audio chunk, skipping processing.")
continue
temp_audio_file.write(audio_chunk)
temp_audio_file.flush()
logging.debug(f"Written audio chunk to temporary file: {temp_audio_file.name}")
audio_data.extend(audio_chunk) # In-memory data buffer (if needed)
#logging.debug(f"Audio data buffer extended to size {len(audio_data)} bytes.")
# Perform transcription and track new segments
logging.info(
f"Transcribing audio from {temp_audio_file.name}. Processed segments: {len(processed_segments)}")
partial_result, processed_segments = transcribe_core_ws(temp_audio_file.name, processed_segments)
logging.info(
f"Transcription completed. Sending {len(partial_result['new_segments'])} new segments to the client.")
# Send the new transcription result back to the client
logging.info(
f"partial result{partial_result}")
await websocket.send_json(partial_result)
except WebSocketDisconnect:
logging.info("WebSocket connection closed by the client. Ending transcription session.")
break
except Exception as e:
logging.error(f"Error processing audio chunk: {e}")
await websocket.send_json({"error": str(e)})
break
except Exception as e:
logging.error(f"Unexpected error during WebSocket transcription: {e}")
await websocket.send_json({"error": str(e)})
finally:
logging.info("Cleaning up and closing WebSocket connection.")
|