Spaces:
Sleeping
Sleeping
File size: 16,579 Bytes
bdd9100 b3935fd 47058ca 5a62402 bdd9100 ebaaf9b bdd9100 40cde13 9ccc5b5 ebaaf9b bdd9100 92ce07c ebaaf9b 7380009 40cde13 b85baaf 9ccc5b5 5a62402 e37aac1 bdd9100 40cde13 7380009 bdd9100 40cde13 bdd9100 40cde13 8e3c59e bdd9100 40cde13 b3935fd bdd9100 b3935fd 5a62402 47058ca 9ccc5b5 91062af 47058ca 5a62402 ebaaf9b 9ccc5b5 f4a3257 5a62402 f4a3257 5a62402 f4a3257 5a62402 f4a3257 5a62402 f4a3257 5a62402 f4a3257 5a62402 ebaaf9b f4a3257 ebaaf9b e9d738a 4c42c49 ebaaf9b f4a3257 ebaaf9b c72d2a4 ebaaf9b a94388a 5a62402 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import base64
import faster_whisper
import tempfile
import numpy as np
import torch
import time
import requests
import logging
from fastapi import FastAPI, HTTPException, WebSocket, WebSocketDisconnect
import websockets
from pydantic import BaseModel
from typing import Optional
import sys
import asyncio
# Configure logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s: %(message)s',
handlers=[logging.StreamHandler(sys.stdout)], force=True)
logger = logging.getLogger(__name__)
#logging.getLogger("asyncio").setLevel(logging.DEBUG)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
logging.info(f'Device selected: {device}')
model_name = 'ivrit-ai/faster-whisper-v2-d4'
logging.info(f'Loading model: {model_name}')
model = faster_whisper.WhisperModel(model_name, device=device)
logging.info('Model loaded successfully')
# Maximum data size: 200MB
MAX_PAYLOAD_SIZE = 200 * 1024 * 1024
logging.info(f'Max payload size set to: {MAX_PAYLOAD_SIZE} bytes')
app = FastAPI()
# class InputData(BaseModel):
# type: str
# data: Optional[str] = None # Used for blob input
# url: Optional[str] = None # Used for url input
#
#
# def download_file(url, max_size_bytes, output_filename, api_key=None):
# """
# Download a file from a given URL with size limit and optional API key.
# """
# logging.debug(f'Starting file download from URL: {url}')
# try:
# headers = {}
# if api_key:
# headers['Authorization'] = f'Bearer {api_key}'
# logging.debug('API key provided, added to headers')
#
# response = requests.get(url, stream=True, headers=headers)
# response.raise_for_status()
#
# file_size = int(response.headers.get('Content-Length', 0))
# logging.info(f'File size: {file_size} bytes')
#
# if file_size > max_size_bytes:
# logging.error(f'File size exceeds limit: {file_size} > {max_size_bytes}')
# return False
#
# downloaded_size = 0
# with open(output_filename, 'wb') as file:
# for chunk in response.iter_content(chunk_size=8192):
# downloaded_size += len(chunk)
# logging.debug(f'Downloaded {downloaded_size} bytes')
# if downloaded_size > max_size_bytes:
# logging.error('Downloaded size exceeds maximum allowed payload size')
# return False
# file.write(chunk)
#
# logging.info(f'File downloaded successfully: {output_filename}')
# return True
#
# except requests.RequestException as e:
# logging.error(f"Error downloading file: {e}")
# return False
@app.get("/")
async def read_root():
return {"message": "This is the Ivrit AI Streaming service."}
# async def transcribe_core_ws(audio_file):
# ret = {'segments': []}
#
# try:
#
# logging.debug(f"Initiating model transcription for file: {audio_file}")
#
# segs, _ = await asyncio.to_thread(model.transcribe, audio_file, language='he', word_timestamps=True)
# logging.info('Transcription completed successfully.')
# except Exception as e:
# logging.error(f"Error during transcription: {e}")
# raise e
#
# # Track the new segments and update the last transcribed time
# for s in segs:
# logging.info(f"Processing segment with start time: {s.start} and end time: {s.end}")
#
# # Only process segments that start after the last transcribed time
# logging.info(f"New segment found starting at {s.start} seconds.")
# words = [{'start': w.start, 'end': w.end, 'word': w.word, 'probability': w.probability} for w in s.words]
#
# seg = {
# 'id': s.id, 'seek': s.seek, 'start': s.start, 'end': s.end, 'text': s.text,
# 'avg_logprob': s.avg_logprob, 'compression_ratio': s.compression_ratio,
# 'no_speech_prob': s.no_speech_prob, 'words': words
# }
# logging.info(f'Adding new transcription segment: {seg}')
# ret['segements'].append(seg)
#
# # Update the last transcribed time to the end of the current segment
#
#
# #logging.info(f"Returning {len(ret['new_segments'])} new segments and updated last transcribed time.")
# return ret
import tempfile
def transcribe_core_ws(audio_file, last_transcribed_time):
"""
Transcribe the audio file and return only the segments that have not been processed yet.
:param audio_file: Path to the growing audio file.
:param last_transcribed_time: The last time (in seconds) that was transcribed.
:return: Newly transcribed segments and the updated last transcribed time.
"""
logging.info(f"Starting transcription for file: {audio_file} from {last_transcribed_time} seconds.")
ret = {'new_segments': []}
new_last_transcribed_time = last_transcribed_time
try:
# Transcribe the entire audio file
logging.debug(f"Initiating model transcription for file: {audio_file}")
segs, _ = model.transcribe(audio_file, language='he', word_timestamps=True)
logging.info('Transcription completed successfully.')
except Exception as e:
logging.error(f"Error during transcription: {e}")
raise e
# Track the new segments and update the last transcribed time
for s in segs:
logging.info(f"Processing segment with start time: {s.start} and end time: {s.end}")
# Only process segments that start after the last transcribed time
if s.start >= last_transcribed_time:
logging.info(f"New segment found starting at {s.start} seconds.")
words = [{'start': w.start, 'end': w.end, 'word': w.word, 'probability': w.probability} for w in s.words]
seg = {
'id': s.id, 'seek': s.seek, 'start': s.start, 'end': s.end, 'text': s.text,
'avg_logprob': s.avg_logprob, 'compression_ratio': s.compression_ratio,
'no_speech_prob': s.no_speech_prob, 'words': words
}
logging.info(f'Adding new transcription segment: {seg}')
ret['new_segments'].append(seg)
# Update the last transcribed time to the end of the current segment
new_last_transcribed_time = max(new_last_transcribed_time, s.end)
logging.debug(f"Updated last transcribed time to: {new_last_transcribed_time} seconds")
#logging.info(f"Returning {len(ret['new_segments'])} new segments and updated last transcribed time.")
return ret, new_last_transcribed_time
import tempfile
@app.websocket("/wtranscribe")
async def websocket_transcribe(websocket: WebSocket):
logging.info("New WebSocket connection request received.")
await websocket.accept()
logging.info("WebSocket connection established successfully.")
try:
processed_segments = [] # Keeps track of the segments already transcribed
accumulated_audio_size = 0 # Track how much audio data has been buffered
accumulated_audio_time = 0 # Track the total audio duration accumulated
last_transcribed_time = 0.0
#min_transcription_time = 5.0 # Minimum duration of audio in seconds before transcription starts
# A temporary file to store the growing audio data
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio_file:
logging.info(f"Temporary audio file created at {temp_audio_file.name}")
while True:
try:
# Receive the next chunk of audio data
audio_chunk = await websocket.receive_bytes()
if not audio_chunk:
logging.warning("Received empty audio chunk, skipping processing.")
continue
# Write audio chunk to file and accumulate size and time
temp_audio_file.write(audio_chunk)
temp_audio_file.flush()
accumulated_audio_size += len(audio_chunk)
# Estimate the duration of the chunk based on its size (e.g., 16kHz audio)
chunk_duration = len(audio_chunk) / (16000 * 2) # Assuming 16kHz mono WAV (2 bytes per sample)
accumulated_audio_time += chunk_duration
logging.info(f"Received and buffered {len(audio_chunk)} bytes, total buffered: {accumulated_audio_size} bytes, total time: {accumulated_audio_time:.2f} seconds")
# Transcribe when enough time (audio) is accumulated (e.g., at least 5 seconds of audio)
#if accumulated_audio_time >= min_transcription_time:
#logging.info("Buffered enough audio time, starting transcription.")
# Call the transcription function with the last processed time
partial_result, last_transcribed_time = transcribe_core_ws(temp_audio_file.name, last_transcribed_time)
accumulated_audio_time = 0 # Reset the accumulated audio time
processed_segments.extend(partial_result['new_segments'])
# Reset the accumulated audio size after transcription
accumulated_audio_size = 0
# Send the transcription result back to the client with both new and all processed segments
response = {
"new_segments": partial_result['new_segments'],
"processed_segments": processed_segments
}
logging.info(f"Sending {len(partial_result['new_segments'])} new segments to the client.")
await websocket.send_json(response)
except WebSocketDisconnect:
logging.info("WebSocket connection closed by the client.")
break
except Exception as e:
logging.error(f"Unexpected error during WebSocket transcription: {e}")
await websocket.send_json({"error": str(e)})
finally:
logging.info("Cleaning up and closing WebSocket connection.")
# @app.websocket("/ws")
# async def websocket_endpoint(websocket: WebSocket):
# """WebSocket endpoint to handle client connections."""
# await websocket.accept()
# client_ip = websocket.client.host
# logger.info(f"Client connected: {client_ip}")
# sys.stdout.flush()
# try:
# await process_audio_stream(websocket)
# except WebSocketDisconnect:
# logger.info(f"Client disconnected: {client_ip}")
# except Exception as e:
# logger.error(f"Unexpected error: {e}")
# await websocket.close()
#
# async def process_audio_stream(websocket: WebSocket):
# """Continuously receive audio chunks and initiate transcription tasks."""
# sampling_rate = 16000
# min_chunk_size = 5 # in seconds
#
# transcription_task = None
# chunk_counter = 0
# total_bytes_received = 0
#
# while True:
# try:
# # Receive audio data from client
# data = await websocket.receive_bytes()
# if not data:
# logger.info("No data received, closing connection")
# break
# chunk_counter += 1
# chunk_size = len(data)
# total_bytes_received += chunk_size
# #logger.debug(f"Received chunk {chunk_counter}: {chunk_size} bytes")
#
# audio_chunk = process_received_audio(data)
# #logger.debug(f"Processed audio chunk {chunk_counter}: {len(audio_chunk)} samples")
# # Check if enough audio has been buffered
# # if transcription_task is None or transcription_task.done():
# # # Start a new transcription task
# # # logger.info(f"Starting transcription task for {len(audio_buffer)} samples")
# transcription_task = asyncio.create_task(
# transcribe_and_send(websocket, audio_chunk)
# )
#
# #logger.debug(f"Audio buffer size: {len(audio_buffer)} samples")
# except Exception as e:
# logger.error(f"Error receiving data: {e}")
# break
#
#
# async def transcribe_and_send(websocket: WebSocket, audio_data):
# """Run transcription in a separate thread and send the result to the client."""
# logger.debug(f"Transcription task started for {len(audio_data)} samples")
# transcription_result = await asyncio.to_thread(sync_transcribe_audio, audio_data)
# if transcription_result:
# try:
# # Send the result as JSON
# await websocket.send_json(transcription_result)
# logger.info(f"Transcription JSON sent to client {transcription_result}")
# except Exception as e:
# logger.error(f"Error sending transcription: {e}")
# else:
# logger.warning("No transcription result to send")
#
# def sync_transcribe_audio(audio_data):
# """Synchronously transcribe audio data using the ASR model and format the result."""
# try:
#
# logger.info('Starting transcription...')
# segments, info = model.transcribe(
# audio_data, language="he",compression_ratio_threshold=2.5, word_timestamps=True
# )
# logger.info('Transcription completed')
#
# # Build the transcription result as per your requirement
# ret = {'segments': []}
#
# for s in segments:
# logger.debug(f"Processing segment {s.id} with start time: {s.start} and end time: {s.end}")
#
# # Process words in the segment
# words = [{
# 'start': float(w.start),
# 'end': float(w.end),
# 'word': w.word,
# 'probability': float(w.probability)
# } for w in s.words]
#
# seg = {
# 'id': int(s.id),
# 'seek': int(s.seek),
# 'start': float(s.start),
# 'end': float(s.end),
# 'text': s.text,
# 'avg_logprob': float(s.avg_logprob),
# 'compression_ratio': float(s.compression_ratio),
# 'no_speech_prob': float(s.no_speech_prob),
# 'words': words
# }
# logger.debug(f'Adding new transcription segment: {seg}')
# ret['segments'].append(seg)
#
# logger.debug(f"Total segments in transcription result: {len(ret['segments'])}")
# return ret
# except Exception as e:
# logger.error(f"Transcription error: {e}")
# return {}
#
# def process_received_audio(data):
# """Convert received bytes into normalized float32 NumPy array."""
# #logger.debug(f"Processing received audio data of size {len(data)} bytes")
# audio_int16 = np.frombuffer(data, dtype=np.int16)
# #logger.debug(f"Converted to int16 NumPy array with {len(audio_int16)} samples")
#
# audio_float32 = audio_int16.astype(np.float32) / 32768.0 # Normalize to [-1, 1]
# #logger.debug(f"Normalized audio data to float32 with {len(audio_float32)} samples")
#
# return audio_float32
#
#
# @app.websocket("/wtranscribe")
# async def websocket_transcribe(websocket: WebSocket):
# logging.info("New WebSocket connection request received.")
# await websocket.accept()
# logging.info("WebSocket connection established successfully.")
#
# try:
# while True:
# try:
# audio_chunk = await websocket.receive_bytes()
# if not audio_chunk:
# logging.warning("Received empty audio chunk, skipping processing.")
# continue
# with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio_file: ##new temp file for every chunk
# logging.info(f"Temporary audio file created at {temp_audio_file.name}")
# # Receive the next chunk of audio data
#
#
#
# partial_result = await transcribe_core_ws(temp_audio_file.name)
# await websocket.send_json(partial_result)
#
# except WebSocketDisconnect:
# logging.info("WebSocket connection closed by the client.")
# break
#
# except Exception as e:
# logging.error(f"Unexpected error during WebSocket transcription: {e}")
# await websocket.send_json({"error": str(e)})
#
# finally:
# logging.info("Cleaning up and closing WebSocket connection.")
|