Spaces:
Sleeping
Sleeping
File size: 22,783 Bytes
bdd9100 861eb71 55b37bf b157f40 55b37bf b3935fd 47058ca 5a62402 bdd9100 ebaaf9b bdd9100 40cde13 9ccc5b5 ebaaf9b bdd9100 92ce07c ebaaf9b 7380009 d8dadfc 861eb71 40cde13 9b933e3 9ccc5b5 5a62402 e37aac1 d8dadfc bdd9100 40cde13 7380009 bdd9100 40cde13 bdd9100 40cde13 8e3c59e bdd9100 40cde13 b3935fd bdd9100 b3935fd 861eb71 d8dadfc 861eb71 d8dadfc 861eb71 5a62402 47058ca 9ccc5b5 91062af 47058ca 5a62402 ebaaf9b 228afd7 9ccc5b5 ea326b2 5a62402 f4a3257 228afd7 f4a3257 ea326b2 f4a3257 ea326b2 5a62402 f4a3257 ea326b2 f4a3257 1c789c0 9bff659 f4a3257 ea326b2 f4a3257 d7b2452 8004cea d7b2452 da37a77 8004cea d7b2452 9bff659 d7b2452 9bff659 d82fb72 ea326b2 9bff659 d7b2452 ea326b2 d7b2452 1c789c0 d7b2452 9bff659 d7b2452 da37a77 aba4a2e 7456852 da37a77 7456852 9bff659 aba4a2e 7456852 1c789c0 228afd7 1c789c0 7456852 d7b2452 da37a77 7456852 da37a77 7456852 5b3e211 228afd7 ea326b2 d7b2452 f4a3257 ea326b2 f4a3257 ea326b2 f4a3257 da37a77 1c789c0 da37a77 d7b2452 5a62402 ebaaf9b f4a3257 ebaaf9b e9d738a 55b37bf e9d738a 55b37bf 4c42c49 55b37bf ebaaf9b f4a3257 ebaaf9b 5a62402 861eb71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 |
import base64
import json
import os
import wave
import faster_whisper
import tempfile
import numpy as np
import torch
import time
import requests
import logging
from fastapi import FastAPI, HTTPException, WebSocket, WebSocketDisconnect
import websockets
from pydantic import BaseModel
from typing import Optional
import sys
import asyncio
from model import segment_to_dict, get_raw_words_from_segments
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s: %(message)s',
handlers=[logging.StreamHandler(sys.stdout)], force=True)
logger = logging.getLogger(__name__)
#logging.getLogger("asyncio").setLevel(logging.DEBUG)
logging.info(torch.__version__)
logging.info(torch.version.cuda) # Should show the installed CUDA version
device = 'cuda' if torch.cuda.is_available() else 'cpu'
logging.info(f'Device selected: {device}')
model_name = 'ivrit-ai/faster-whisper-v2-d4'
logging.info(f'Loading model: {model_name}')
model = faster_whisper.WhisperModel(model_name, device=device)
logging.info('Model loaded successfully')
# Maximum data size: 200MB
MAX_PAYLOAD_SIZE = 200 * 1024 * 1024
logging.info(f'Max payload size set to: {MAX_PAYLOAD_SIZE} bytes')
app = FastAPI()
# Define Pydantic model for input
class TranscribeInput(BaseModel):
audio: str # Base64-encoded audio data
init_prompt: str = ""
# Define WebSocket endpoint
@app.websocket("/ws_transcribe_streaming")
async def websocket_transcribe(websocket: WebSocket):
logger.info("New WebSocket connection request received.")
await websocket.accept()
logger.info("WebSocket connection established successfully.")
try:
while True:
try:
# Receive JSON data
data = await websocket.receive_json()
# Parse input data
input_data = TranscribeInput(**data)
# Decode base64 audio data
audio_bytes = base64.b64decode(input_data.audio)
# Write audio data to a temporary file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio_file:
temp_audio_file.write(audio_bytes)
temp_audio_file.flush()
audio_file_path = temp_audio_file.name
# Call the transcribe function
# segments, info = await asyncio.to_thread(model.transcribe,
segments, info = model.transcribe(
audio_file_path,
language='he',
initial_prompt=input_data.init_prompt,
beam_size=5,
word_timestamps=True,
condition_on_previous_text=True
)
# Convert segments to list and serialize
segments_list = list(segments)
segments_serializable = [segment_to_dict(s) for s in segments_list]
logger.info(get_raw_words_from_segments(segments_list))
# Send the serialized segments back to the client
await websocket.send_json(segments_serializable)
except WebSocketDisconnect:
logger.info("WebSocket connection closed by the client.")
break
except Exception as e:
logger.error(f"Unexpected error during WebSocket transcription: {e}")
await websocket.send_json({"error": str(e)})
finally:
logger.info("Cleaning up and closing WebSocket connection.")
# class InputData(BaseModel):
# type: str
# data: Optional[str] = None # Used for blob input
# url: Optional[str] = None # Used for url input
#
#
# def download_file(url, max_size_bytes, output_filename, api_key=None):
# """
# Download a file from a given URL with size limit and optional API key.
# """
# logging.debug(f'Starting file download from URL: {url}')
# try:
# headers = {}
# if api_key:
# headers['Authorization'] = f'Bearer {api_key}'
# logging.debug('API key provided, added to headers')
#
# response = requests.get(url, stream=True, headers=headers)
# response.raise_for_status()
#
# file_size = int(response.headers.get('Content-Length', 0))
# logging.info(f'File size: {file_size} bytes')
#
# if file_size > max_size_bytes:
# logging.error(f'File size exceeds limit: {file_size} > {max_size_bytes}')
# return False
#
# downloaded_size = 0
# with open(output_filename, 'wb') as file:
# for chunk in response.iter_content(chunk_size=8192):
# downloaded_size += len(chunk)
# logging.debug(f'Downloaded {downloaded_size} bytes')
# if downloaded_size > max_size_bytes:
# logging.error('Downloaded size exceeds maximum allowed payload size')
# return False
# file.write(chunk)
#
# logging.info(f'File downloaded successfully: {output_filename}')
# return True
#
# except requests.RequestException as e:
# logging.error(f"Error downloading file: {e}")
# return False
@app.get("/")
async def read_root():
return {"message": "This is the Ivrit AI Streaming service."}
# async def transcribe_core_ws(audio_file):
# ret = {'segments': []}
#
# try:
#
# logging.debug(f"Initiating model transcription for file: {audio_file}")
#
# segs, _ = await asyncio.to_thread(model.transcribe, audio_file, language='he', word_timestamps=True)
# logging.info('Transcription completed successfully.')
# except Exception as e:
# logging.error(f"Error during transcription: {e}")
# raise e
#
# # Track the new segments and update the last transcribed time
# for s in segs:
# logging.info(f"Processing segment with start time: {s.start} and end time: {s.end}")
#
# # Only process segments that start after the last transcribed time
# logging.info(f"New segment found starting at {s.start} seconds.")
# words = [{'start': w.start, 'end': w.end, 'word': w.word, 'probability': w.probability} for w in s.words]
#
# seg = {
# 'id': s.id, 'seek': s.seek, 'start': s.start, 'end': s.end, 'text': s.text,
# 'avg_logprob': s.avg_logprob, 'compression_ratio': s.compression_ratio,
# 'no_speech_prob': s.no_speech_prob, 'words': words
# }
# logging.info(f'Adding new transcription segment: {seg}')
# ret['segements'].append(seg)
#
# # Update the last transcribed time to the end of the current segment
#
#
# #logging.info(f"Returning {len(ret['new_segments'])} new segments and updated last transcribed time.")
# return ret
import tempfile
async def transcribe_core_ws(audio_file):
ret = {'segments': []}
try:
# Transcribe the entire audio file
logging.debug(f"Initiating model transcription for file: {audio_file}")
segs, _ = await asyncio.to_thread(model.transcribe,audio_file, language='he', word_timestamps=True)
logging.info('Transcription completed successfully.')
except Exception as e:
logging.error(f"Error during transcription: {e}")
raise e
# Track the new segments and update the last transcribed time
for s in segs:
logging.info(f"Processing segment with start time: {s.start} and end time: {s.end}")
words = [{'start': w.start, 'end': w.end, 'word': w.word, 'probability': w.probability} for w in s.words]
seg = {
'id': s.id, 'seek': s.seek, 'start': s.start, 'end': s.end, 'text': s.text,
'avg_logprob': s.avg_logprob, 'compression_ratio': s.compression_ratio,
'no_speech_prob': s.no_speech_prob, 'words': words
}
logging.info(f'Adding new transcription segment: {seg}')
ret['segments'].append(seg)
#logging.info(f"Returning {len(ret['new_segments'])} new segments and updated last transcribed time.")
return ret
import tempfile
# Function to verify if the PCM data is valid
def validate_pcm_data(pcm_audio_buffer, sample_rate, channels, sample_width):
"""Validates the PCM data buffer to ensure it conforms to the expected format."""
logging.info(f"Validating PCM data: total size = {len(pcm_audio_buffer)} bytes.")
# Calculate the expected sample size
expected_sample_size = sample_rate * channels * sample_width
actual_sample_size = len(pcm_audio_buffer)
if actual_sample_size == 0:
logging.error("Received PCM data is empty.")
return False
logging.info(f"Expected sample size per second: {expected_sample_size} bytes.")
if actual_sample_size % expected_sample_size != 0:
logging.warning(
f"PCM data size {actual_sample_size} is not a multiple of the expected sample size per second ({expected_sample_size} bytes). Data may be corrupted or incomplete.")
return True
# Function to validate if the created WAV file is valid
def validate_wav_file(wav_file_path):
"""Validates if the WAV file was created correctly and can be opened."""
try:
with wave.open(wav_file_path, 'rb') as wav_file:
sample_rate = wav_file.getframerate()
channels = wav_file.getnchannels()
sample_width = wav_file.getsampwidth()
logging.info(
f"WAV file details - Sample Rate: {sample_rate}, Channels: {channels}, Sample Width: {sample_width}")
return True
except wave.Error as e:
logging.error(f"Error reading WAV file: {e}")
return False
@app.websocket("/wtranscribe")
async def websocket_transcribe(websocket: WebSocket):
logging.info("New WebSocket connection request received.")
await websocket.accept()
logging.info("WebSocket connection established successfully.")
try:
segments = [] # Keeps track of the segments already transcribed
accumulated_audio_time = 0 # Track the total audio duration accumulated
last_transcribed_time = 0.0
min_transcription_time = 5.0 # Minimum duration of audio in seconds before transcription starts
# A buffer to store raw PCM audio data
pcm_audio_buffer = bytearray()
logging.info("im here, is it failing?.")
# Metadata for the incoming PCM data (sample rate, channels, and sample width should be consistent)
sample_rate = 16000 # 16kHz
channels = 1 # Mono
sample_width = 2 # 2 bytes per sample (16-bit audio)
# Ensure the /tmp directory exists
tmp_directory = "/tmp"
if not os.path.exists(tmp_directory):
logging.info(f"Creating /tmp directory: {tmp_directory}")
os.makedirs(tmp_directory)
logging.info("im here, is it failing?2.")
while True:
logging.info("in while true")
try:
# Receive the next chunk of PCM audio data
logging.info("in try before recive ")
audio_chunk = await websocket.receive_bytes()
if isinstance(audio_chunk, bytes):
print("is instance ")
else:
print("is instance NOT")
logging.info("after recieve")
sys.stdout.flush()
if not audio_chunk:
logging.warning("Received empty audio chunk, skipping processing.")
continue
# Accumulate the raw PCM data into the buffer
pcm_audio_buffer.extend(audio_chunk)
print(f"len of pcm buffer: {len(pcm_audio_buffer)}")
logging.info("after buffer extend")
# Validate the PCM data after each chunk
if not validate_pcm_data(pcm_audio_buffer, sample_rate, channels, sample_width):
logging.error("Invalid PCM data received. Aborting transcription.")
await websocket.send_json({"error": "Invalid PCM data received."})
return
# Estimate the duration of the chunk based on its size
chunk_duration = len(audio_chunk) / (sample_rate * channels * sample_width)
accumulated_audio_time += chunk_duration
logging.info(
f"Received and buffered {len(audio_chunk)} bytes, total buffered: {len(pcm_audio_buffer)} bytes, total time: {accumulated_audio_time:.2f} seconds")
# Transcribe when enough time (audio) is accumulated (e.g., at least 5 seconds of audio)
if accumulated_audio_time >= min_transcription_time:
logging.info("Buffered enough audio time, starting transcription.")
# Create a temporary WAV file in /tmp for transcription
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False, dir="/tmp") as temp_wav_file:
logging.info(f"Temporary audio file created at {temp_wav_file.name}")
with wave.open(temp_wav_file.name, 'wb') as wav_file:
wav_file.setnchannels(channels)
wav_file.setsampwidth(sample_width)
wav_file.setframerate(sample_rate)
wav_file.writeframes(pcm_audio_buffer)
temp_wav_file.flush()
if not validate_wav_file(temp_wav_file.name):
logging.error(f"Invalid WAV file created: {temp_wav_file.name}")
await websocket.send_json({"error": "Invalid WAV file created."})
return
logging.info(f"Temporary WAV file created at {temp_wav_file.name} for transcription.")
# Log to confirm that the file exists and has the expected size
if os.path.exists(temp_wav_file.name):
file_size = os.path.getsize(temp_wav_file.name)
logging.info(f"Temporary WAV file size: {file_size} bytes.")
else:
logging.error(f"Temporary WAV file {temp_wav_file.name} does not exist.")
raise Exception(f"Temporary WAV file {temp_wav_file.name} not found.")
with open(temp_wav_file.name, 'rb') as audio_file:
audio_data = audio_file.read()
partial_result = await asyncio.to_thread(transcribe_core_ws,audio_data)
segments.extend(partial_result['segments'])
# Clear the buffer after transcription
pcm_audio_buffer.clear()
accumulated_audio_time = 0 # Reset accumulated time
# Send the transcription result back to the client with both new and all processed segments
response = {
"segments": segments
}
logging.info(f"Sending {len(partial_result['segments'])} segments to the client.")
await websocket.send_json(response)
# Optionally delete the temporary WAV file after processing
if os.path.exists(temp_wav_file.name):
os.remove(temp_wav_file.name)
logging.info(f"Temporary WAV file {temp_wav_file.name} removed.")
except WebSocketDisconnect:
logging.info("WebSocket connection closed by the client.")
break
except Exception as e:
logging.error(f"Unexpected error during WebSocket transcription: {e}")
await websocket.send_json({"error": str(e)})
finally:
logging.info("Cleaning up and closing WebSocket connection.")
from fastapi.responses import FileResponse
@app.get("/download_audio/{filename}")
async def download_audio(filename: str):
file_path = f"/tmp/{filename}"
# Ensure the file exists before serving it
if os.path.exists(file_path):
return FileResponse(file_path, media_type='audio/wav', filename=filename)
else:
return {"error": "File not found"}
# @app.websocket("/ws")
# async def websocket_endpoint(websocket: WebSocket):
# """WebSocket endpoint to handle client connections."""
# await websocket.accept()
# client_ip = websocket.client.host
# logger.info(f"Client connected: {client_ip}")
# sys.stdout.flush()
# try:
# await process_audio_stream(websocket)
# except WebSocketDisconnect:
# logger.info(f"Client disconnected: {client_ip}")
# except Exception as e:
# logger.error(f"Unexpected error: {e}")
# await websocket.close()
#
# async def process_audio_stream(websocket: WebSocket):
# """Continuously receive audio chunks and initiate transcription tasks."""
# sampling_rate = 16000
# min_chunk_size = 5 # in seconds
#
# transcription_task = None
# chunk_counter = 0
# total_bytes_received = 0
#
# while True:
# try:
# # Receive audio data from client
# data = await websocket.receive_bytes()
# if not data:
# logger.info("No data received, closing connection")
# break
# chunk_counter += 1
# chunk_size = len(data)
# total_bytes_received += chunk_size
# #logger.debug(f"Received chunk {chunk_counter}: {chunk_size} bytes")
#
# audio_chunk = process_received_audio(data)
# #logger.debug(f"Processed audio chunk {chunk_counter}: {len(audio_chunk)} samples")
# # Check if enough audio has been buffered
# # if transcription_task is None or transcription_task.done():
# # # Start a new transcription task
# # # logger.info(f"Starting transcription task for {len(audio_buffer)} samples")
# transcription_task = asyncio.create_task(
# transcribe_and_send(websocket, audio_chunk)
# )
#
# #logger.debug(f"Audio buffer size: {len(audio_buffer)} samples")
# except Exception as e:
# logger.error(f"Error receiving data: {e}")
# break
#
#
# async def transcribe_and_send(websocket: WebSocket, audio_data):
# """Run transcription in a separate thread and send the result to the client."""
# logger.debug(f"Transcription task started for {len(audio_data)} samples")
# transcription_result = await asyncio.to_thread(sync_transcribe_audio, audio_data)
# if transcription_result:
# try:
# # Send the result as JSON
# await websocket.send_json(transcription_result)
# logger.info(f"Transcription JSON sent to client {transcription_result}")
# except Exception as e:
# logger.error(f"Error sending transcription: {e}")
# else:
# logger.warning("No transcription result to send")
#
# def sync_transcribe_audio(audio_data):
# """Synchronously transcribe audio data using the ASR model and format the result."""
# try:
#
# logger.info('Starting transcription...')
# segments, info = model.transcribe(
# audio_data, language="he",compression_ratio_threshold=2.5, word_timestamps=True
# )
# logger.info('Transcription completed')
#
# # Build the transcription result as per your requirement
# ret = {'segments': []}
#
# for s in segments:
# logger.debug(f"Processing segment {s.id} with start time: {s.start} and end time: {s.end}")
#
# # Process words in the segment
# words = [{
# 'start': float(w.start),
# 'end': float(w.end),
# 'word': w.word,
# 'probability': float(w.probability)
# } for w in s.words]
#
# seg = {
# 'id': int(s.id),
# 'seek': int(s.seek),
# 'start': float(s.start),
# 'end': float(s.end),
# 'text': s.text,
# 'avg_logprob': float(s.avg_logprob),
# 'compression_ratio': float(s.compression_ratio),
# 'no_speech_prob': float(s.no_speech_prob),
# 'words': words
# }
# logger.debug(f'Adding new transcription segment: {seg}')
# ret['segments'].append(seg)
#
# logger.debug(f"Total segments in transcription result: {len(ret['segments'])}")
# return ret
# except Exception as e:
# logger.error(f"Transcription error: {e}")
# return {}
#
# def process_received_audio(data):
# """Convert received bytes into normalized float32 NumPy array."""
# #logger.debug(f"Processing received audio data of size {len(data)} bytes")
# audio_int16 = np.frombuffer(data, dtype=np.int16)
# #logger.debug(f"Converted to int16 NumPy array with {len(audio_int16)} samples")
#
# audio_float32 = audio_int16.astype(np.float32) / 32768.0 # Normalize to [-1, 1]
# #logger.debug(f"Normalized audio data to float32 with {len(audio_float32)} samples")
#
# return audio_float32
#
#
# @app.websocket("/wtranscribe")
# async def websocket_transcribe(websocket: WebSocket):
# logging.info("New WebSocket connection request received.")
# await websocket.accept()
# logging.info("WebSocket connection established successfully.")
#
# try:
# while True:
# try:
# audio_chunk = await websocket.receive_bytes()
# if not audio_chunk:
# logging.warning("Received empty audio chunk, skipping processing.")
# continue
# with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio_file: ##new temp file for every chunk
# logging.info(f"Temporary audio file created at {temp_audio_file.name}")
# # Receive the next chunk of audio data
#
#
#
# partial_result = await transcribe_core_ws(temp_audio_file.name)
# await websocket.send_json(partial_result)
#
# except WebSocketDisconnect:
# logging.info("WebSocket connection closed by the client.")
# break
#
# except Exception as e:
# logging.error(f"Unexpected error during WebSocket transcription: {e}")
# await websocket.send_json({"error": str(e)})
#
# finally:
# logging.info("Cleaning up and closing WebSocket connection.")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app) |