Spaces:
Sleeping
Sleeping
File size: 33,383 Bytes
2d0e884 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 |
#!/usr/bin/env python3
import sys
import numpy as np
import librosa
from functools import lru_cache
import time
import logging
import io
import soundfile as sf
import math
logger = logging.getLogger(__name__)
@lru_cache
def load_audio(fname):
a, _ = librosa.load(fname, sr=16000, dtype=np.float32)
return a
def load_audio_chunk(fname, beg, end):
audio = load_audio(fname)
beg_s = int(beg*16000)
end_s = int(end*16000)
return audio[beg_s:end_s]
# Whisper backend
class ASRBase:
sep = " " # join transcribe words with this character (" " for whisper_timestamped,
# "" for faster-whisper because it emits the spaces when neeeded)
def __init__(self, lan, modelsize=None, cache_dir=None, model_dir=None, logfile=sys.stderr):
self.logfile = logfile
self.transcribe_kargs = {}
if lan == "auto":
self.original_language = None
else:
self.original_language = lan
self.model = self.load_model(modelsize, cache_dir, model_dir)
def load_model(self, modelsize, cache_dir):
raise NotImplemented("must be implemented in the child class")
def transcribe(self, audio, init_prompt=""):
raise NotImplemented("must be implemented in the child class")
def use_vad(self):
raise NotImplemented("must be implemented in the child class")
class WhisperTimestampedASR(ASRBase):
"""Uses whisper_timestamped library as the backend. Initially, we tested the code on this backend. It worked, but slower than faster-whisper.
On the other hand, the installation for GPU could be easier.
"""
sep = " "
def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
import whisper
import whisper_timestamped
from whisper_timestamped import transcribe_timestamped
self.transcribe_timestamped = transcribe_timestamped
if model_dir is not None:
logger.debug("ignoring model_dir, not implemented")
return whisper.load_model(modelsize, download_root=cache_dir)
def transcribe(self, audio, init_prompt=""):
result = self.transcribe_timestamped(self.model,
audio, language=self.original_language,
initial_prompt=init_prompt, verbose=None,
condition_on_previous_text=True, **self.transcribe_kargs)
return result
def ts_words(self,r):
# return: transcribe result object to [(beg,end,"word1"), ...]
o = []
for s in r["segments"]:
for w in s["words"]:
t = (w["start"],w["end"],w["text"])
o.append(t)
return o
def segments_end_ts(self, res):
return [s["end"] for s in res["segments"]]
def use_vad(self):
self.transcribe_kargs["vad"] = True
def set_translate_task(self):
self.transcribe_kargs["task"] = "translate"
class FasterWhisperASR(ASRBase):
"""Uses faster-whisper library as the backend. Works much faster, appx 4-times (in offline mode). For GPU, it requires installation with a specific CUDNN version.
"""
sep = ""
def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
from faster_whisper import WhisperModel
# logging.getLogger("faster_whisper").setLevel(logger.level)
if model_dir is not None:
logger.debug(f"Loading whisper model from model_dir {model_dir}. modelsize and cache_dir parameters are not used.")
model_size_or_path = model_dir
elif modelsize is not None:
model_size_or_path = modelsize
else:
raise ValueError("modelsize or model_dir parameter must be set")
# this worked fast and reliably on NVIDIA L40
model = WhisperModel(model_size_or_path, device="cuda", compute_type="float16", download_root=cache_dir)
# or run on GPU with INT8
# tested: the transcripts were different, probably worse than with FP16, and it was slightly (appx 20%) slower
#model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")
# or run on CPU with INT8
# tested: works, but slow, appx 10-times than cuda FP16
# model = WhisperModel(modelsize, device="cpu", compute_type="int8") #, download_root="faster-disk-cache-dir/")
return model
def transcribe(self, audio, init_prompt=""):
# tested: beam_size=5 is faster and better than 1 (on one 200 second document from En ESIC, min chunk 0.01)
segments, info = self.model.transcribe(audio, language=self.original_language, initial_prompt=init_prompt, beam_size=5, word_timestamps=True, condition_on_previous_text=True, **self.transcribe_kargs)
#print(info) # info contains language detection result
return list(segments)
def ts_words(self, segments):
o = []
for segment in segments:
for word in segment.words:
if segment.no_speech_prob > 0.9:
continue
# not stripping the spaces -- should not be merged with them!
w = word.word
t = (word.start, word.end, w)
o.append(t)
return o
def segments_end_ts(self, res):
return [s.end for s in res]
def use_vad(self):
self.transcribe_kargs["vad_filter"] = True
def set_translate_task(self):
self.transcribe_kargs["task"] = "translate"
class OpenaiApiASR(ASRBase):
"""Uses OpenAI's Whisper API for audio transcription."""
def __init__(self, lan=None, temperature=0, logfile=sys.stderr):
self.logfile = logfile
self.modelname = "whisper-1"
self.original_language = None if lan == "auto" else lan # ISO-639-1 language code
self.response_format = "verbose_json"
self.temperature = temperature
self.load_model()
self.use_vad_opt = False
# reset the task in set_translate_task
self.task = "transcribe"
def load_model(self, *args, **kwargs):
from openai import OpenAI
self.client = OpenAI()
self.transcribed_seconds = 0 # for logging how many seconds were processed by API, to know the cost
def ts_words(self, segments):
no_speech_segments = []
if self.use_vad_opt:
for segment in segments.segments:
# TODO: threshold can be set from outside
if segment["no_speech_prob"] > 0.8:
no_speech_segments.append((segment.get("start"), segment.get("end")))
o = []
for word in segments.words:
start = word.get("start")
end = word.get("end")
if any(s[0] <= start <= s[1] for s in no_speech_segments):
# print("Skipping word", word.get("word"), "because it's in a no-speech segment")
continue
o.append((start, end, word.get("word")))
return o
def segments_end_ts(self, res):
return [s["end"] for s in res.words]
def transcribe(self, audio_data, prompt=None, *args, **kwargs):
# Write the audio data to a buffer
buffer = io.BytesIO()
buffer.name = "temp.wav"
sf.write(buffer, audio_data, samplerate=16000, format='WAV', subtype='PCM_16')
buffer.seek(0) # Reset buffer's position to the beginning
self.transcribed_seconds += math.ceil(len(audio_data)/16000) # it rounds up to the whole seconds
params = {
"model": self.modelname,
"file": buffer,
"response_format": self.response_format,
"temperature": self.temperature,
"timestamp_granularities": ["word", "segment"]
}
if self.task != "translate" and self.original_language:
params["language"] = self.original_language
if prompt:
params["prompt"] = prompt
if self.task == "translate":
proc = self.client.audio.translations
else:
proc = self.client.audio.transcriptions
# Process transcription/translation
transcript = proc.create(**params)
logger.debug(f"OpenAI API processed accumulated {self.transcribed_seconds} seconds")
return transcript
def use_vad(self):
self.use_vad_opt = True
def set_translate_task(self):
self.task = "translate"
class HypothesisBuffer:
def __init__(self, logfile=sys.stderr):
self.commited_in_buffer = []
self.buffer = []
self.new = []
self.last_commited_time = 0
self.last_commited_word = None
self.logfile = logfile
def insert(self, new, offset):
# compare self.commited_in_buffer and new. It inserts only the words in new that extend the commited_in_buffer, it means they are roughly behind last_commited_time and new in content
# the new tail is added to self.new
new = [(a+offset,b+offset,t) for a,b,t in new]
self.new = [(a,b,t) for a,b,t in new if a > self.last_commited_time-0.1]
if len(self.new) >= 1:
a,b,t = self.new[0]
if abs(a - self.last_commited_time) < 1:
if self.commited_in_buffer:
# it's going to search for 1, 2, ..., 5 consecutive words (n-grams) that are identical in commited and new. If they are, they're dropped.
cn = len(self.commited_in_buffer)
nn = len(self.new)
for i in range(1,min(min(cn,nn),5)+1): # 5 is the maximum
c = " ".join([self.commited_in_buffer[-j][2] for j in range(1,i+1)][::-1])
tail = " ".join(self.new[j-1][2] for j in range(1,i+1))
if c == tail:
words = []
for j in range(i):
words.append(repr(self.new.pop(0)))
words_msg = " ".join(words)
logger.debug(f"removing last {i} words: {words_msg}")
break
def flush(self):
# returns commited chunk = the longest common prefix of 2 last inserts.
commit = []
while self.new:
na, nb, nt = self.new[0]
if len(self.buffer) == 0:
break
if nt == self.buffer[0][2]:
commit.append((na,nb,nt))
self.last_commited_word = nt
self.last_commited_time = nb
self.buffer.pop(0)
self.new.pop(0)
else:
break
self.buffer = self.new
self.new = []
self.commited_in_buffer.extend(commit)
return commit
def pop_commited(self, time):
while self.commited_in_buffer and self.commited_in_buffer[0][1] <= time:
self.commited_in_buffer.pop(0)
def complete(self):
return self.buffer
class OnlineASRProcessor:
SAMPLING_RATE = 16000
def __init__(self, asr, tokenizer=None, buffer_trimming=("segment", 15), logfile=sys.stderr):
"""asr: WhisperASR object
tokenizer: sentence tokenizer object for the target language. Must have a method *split* that behaves like the one of MosesTokenizer. It can be None, if "segment" buffer trimming option is used, then tokenizer is not used at all.
("segment", 15)
buffer_trimming: a pair of (option, seconds), where option is either "sentence" or "segment", and seconds is a number. Buffer is trimmed if it is longer than "seconds" threshold. Default is the most recommended option.
logfile: where to store the log.
"""
self.asr = asr
self.tokenizer = tokenizer
self.logfile = logfile
self.init()
self.buffer_trimming_way, self.buffer_trimming_sec = buffer_trimming
def init(self, offset=None):
"""run this when starting or restarting processing"""
self.audio_buffer = np.array([],dtype=np.float32)
self.transcript_buffer = HypothesisBuffer(logfile=self.logfile)
self.buffer_time_offset = 0
if offset is not None:
self.buffer_time_offset = offset
self.transcript_buffer.last_commited_time = self.buffer_time_offset
self.commited = []
def insert_audio_chunk(self, audio):
self.audio_buffer = np.append(self.audio_buffer, audio)
def prompt(self):
"""Returns a tuple: (prompt, context), where "prompt" is a 200-character suffix of commited text that is inside of the scrolled away part of audio buffer.
"context" is the commited text that is inside the audio buffer. It is transcribed again and skipped. It is returned only for debugging and logging reasons.
"""
k = max(0,len(self.commited)-1)
while k > 0 and self.commited[k-1][1] > self.buffer_time_offset:
k -= 1
p = self.commited[:k]
p = [t for _,_,t in p]
prompt = []
l = 0
while p and l < 200: # 200 characters prompt size
x = p.pop(-1)
l += len(x)+1
prompt.append(x)
non_prompt = self.commited[k:]
return self.asr.sep.join(prompt[::-1]), self.asr.sep.join(t for _,_,t in non_prompt)
def process_iter(self):
"""Runs on the current audio buffer.
Returns: a tuple (beg_timestamp, end_timestamp, "text"), or (None, None, "").
The non-emty text is confirmed (committed) partial transcript.
"""
prompt, non_prompt = self.prompt()
logger.debug(f"PROMPT: {prompt}")
logger.debug(f"CONTEXT: {non_prompt}")
logger.debug(f"transcribing {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f} seconds from {self.buffer_time_offset:2.2f}")
res = self.asr.transcribe(self.audio_buffer, init_prompt=prompt)
# transform to [(beg,end,"word1"), ...]
tsw = self.asr.ts_words(res)
self.transcript_buffer.insert(tsw, self.buffer_time_offset)
o = self.transcript_buffer.flush()
self.commited.extend(o)
completed = self.to_flush(o)
logger.debug(f">>>>COMPLETE NOW: {completed}")
the_rest = self.to_flush(self.transcript_buffer.complete())
logger.debug(f"INCOMPLETE: {the_rest}")
# there is a newly confirmed text
if o and self.buffer_trimming_way == "sentence": # trim the completed sentences
if len(self.audio_buffer)/self.SAMPLING_RATE > self.buffer_trimming_sec: # longer than this
self.chunk_completed_sentence()
if self.buffer_trimming_way == "segment":
s = self.buffer_trimming_sec # trim the completed segments longer than s,
else:
s = 30 # if the audio buffer is longer than 30s, trim it
if len(self.audio_buffer)/self.SAMPLING_RATE > s:
self.chunk_completed_segment(res)
# alternative: on any word
#l = self.buffer_time_offset + len(self.audio_buffer)/self.SAMPLING_RATE - 10
# let's find commited word that is less
#k = len(self.commited)-1
#while k>0 and self.commited[k][1] > l:
# k -= 1
#t = self.commited[k][1]
logger.debug("chunking segment")
#self.chunk_at(t)
logger.debug(f"len of buffer now: {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f}")
return self.to_flush(o)
def chunk_completed_sentence(self):
if self.commited == []: return
logger.debug(self.commited)
sents = self.words_to_sentences(self.commited)
for s in sents:
logger.debug(f"\t\tSENT: {s}")
if len(sents) < 2:
return
while len(sents) > 2:
sents.pop(0)
# we will continue with audio processing at this timestamp
chunk_at = sents[-2][1]
logger.debug(f"--- sentence chunked at {chunk_at:2.2f}")
self.chunk_at(chunk_at)
def chunk_completed_segment(self, res):
if self.commited == []: return
ends = self.asr.segments_end_ts(res)
t = self.commited[-1][1]
if len(ends) > 1:
e = ends[-2]+self.buffer_time_offset
while len(ends) > 2 and e > t:
ends.pop(-1)
e = ends[-2]+self.buffer_time_offset
if e <= t:
logger.debug(f"--- segment chunked at {e:2.2f}")
self.chunk_at(e)
else:
logger.debug(f"--- last segment not within commited area")
else:
logger.debug(f"--- not enough segments to chunk")
def chunk_at(self, time):
"""trims the hypothesis and audio buffer at "time"
"""
self.transcript_buffer.pop_commited(time)
cut_seconds = time - self.buffer_time_offset
self.audio_buffer = self.audio_buffer[int(cut_seconds*self.SAMPLING_RATE):]
self.buffer_time_offset = time
def words_to_sentences(self, words):
"""Uses self.tokenizer for sentence segmentation of words.
Returns: [(beg,end,"sentence 1"),...]
"""
cwords = [w for w in words]
t = " ".join(o[2] for o in cwords)
s = self.tokenizer.split(t)
out = []
while s:
beg = None
end = None
sent = s.pop(0).strip()
fsent = sent
while cwords:
b,e,w = cwords.pop(0)
w = w.strip()
if beg is None and sent.startswith(w):
beg = b
elif end is None and sent == w:
end = e
out.append((beg,end,fsent))
break
sent = sent[len(w):].strip()
return out
def finish(self):
"""Flush the incomplete text when the whole processing ends.
Returns: the same format as self.process_iter()
"""
o = self.transcript_buffer.complete()
f = self.to_flush(o)
logger.debug(f"last, noncommited: {f}")
self.buffer_time_offset += len(self.audio_buffer)/16000
return f
def to_flush(self, sents, sep=None, offset=0, ):
# concatenates the timestamped words or sentences into one sequence that is flushed in one line
# sents: [(beg1, end1, "sentence1"), ...] or [] if empty
# return: (beg1,end-of-last-sentence,"concatenation of sentences") or (None, None, "") if empty
if sep is None:
sep = self.asr.sep
t = sep.join(s[2] for s in sents)
if len(sents) == 0:
b = None
e = None
else:
b = offset + sents[0][0]
e = offset + sents[-1][1]
return (b,e,t)
class VACOnlineASRProcessor(OnlineASRProcessor):
'''Wraps OnlineASRProcessor with VAC (Voice Activity Controller).
It works the same way as OnlineASRProcessor: it receives chunks of audio (e.g. 0.04 seconds),
it runs VAD and continuously detects whether there is speech or not.
When it detects end of speech (non-voice for 500ms), it makes OnlineASRProcessor to end the utterance immediately.
'''
def __init__(self, online_chunk_size, *a, **kw):
self.online_chunk_size = online_chunk_size
self.online = OnlineASRProcessor(*a, **kw)
# VAC:
import torch
model, _ = torch.hub.load(
repo_or_dir='snakers4/silero-vad:v4.0',
model='silero_vad'
)
from silero_vad import VADIterator
self.vac = VADIterator(model) # we use all the default options: 500ms silence, etc.
self.logfile = self.online.logfile
self.init()
def init(self):
self.online.init()
self.vac.reset_states()
self.current_online_chunk_buffer_size = 0
self.is_currently_final = False
self.status = None # or "voice" or "nonvoice"
self.audio_buffer = np.array([],dtype=np.float32)
self.buffer_offset = 0 # in frames
def clear_buffer(self):
self.buffer_offset += len(self.audio_buffer)
self.audio_buffer = np.array([],dtype=np.float32)
def insert_audio_chunk(self, audio):
res = self.vac(audio)
self.audio_buffer = np.append(self.audio_buffer, audio)
if res is not None:
frame = list(res.values())[0]
if 'start' in res and 'end' not in res:
self.status = 'voice'
send_audio = self.audio_buffer[frame-self.buffer_offset:]
self.online.init(offset=frame/self.SAMPLING_RATE)
self.online.insert_audio_chunk(send_audio)
self.current_online_chunk_buffer_size += len(send_audio)
self.clear_buffer()
elif 'end' in res and 'start' not in res:
self.status = 'nonvoice'
send_audio = self.audio_buffer[:frame-self.buffer_offset]
self.online.insert_audio_chunk(send_audio)
self.current_online_chunk_buffer_size += len(send_audio)
self.is_currently_final = True
self.clear_buffer()
else:
# It doesn't happen in the current code.
raise NotImplemented("both start and end of voice in one chunk!!!")
else:
if self.status == 'voice':
self.online.insert_audio_chunk(self.audio_buffer)
self.current_online_chunk_buffer_size += len(self.audio_buffer)
self.clear_buffer()
else:
# We keep 1 second because VAD may later find start of voice in it.
# But we trim it to prevent OOM.
self.buffer_offset += max(0,len(self.audio_buffer)-self.SAMPLING_RATE)
self.audio_buffer = self.audio_buffer[-self.SAMPLING_RATE:]
def process_iter(self):
if self.is_currently_final:
return self.finish()
elif self.current_online_chunk_buffer_size > self.SAMPLING_RATE*self.online_chunk_size:
self.current_online_chunk_buffer_size = 0
ret = self.online.process_iter()
return ret
else:
print("no online update, only VAD", self.status, file=self.logfile)
return (None, None, "")
def finish(self):
ret = self.online.finish()
self.current_online_chunk_buffer_size = 0
self.is_currently_final = False
return ret
WHISPER_LANG_CODES = "af,am,ar,as,az,ba,be,bg,bn,bo,br,bs,ca,cs,cy,da,de,el,en,es,et,eu,fa,fi,fo,fr,gl,gu,ha,haw,he,hi,hr,ht,hu,hy,id,is,it,ja,jw,ka,kk,km,kn,ko,la,lb,ln,lo,lt,lv,mg,mi,mk,ml,mn,mr,ms,mt,my,ne,nl,nn,no,oc,pa,pl,ps,pt,ro,ru,sa,sd,si,sk,sl,sn,so,sq,sr,su,sv,sw,ta,te,tg,th,tk,tl,tr,tt,uk,ur,uz,vi,yi,yo,zh".split(",")
def create_tokenizer(lan):
"""returns an object that has split function that works like the one of MosesTokenizer"""
assert lan in WHISPER_LANG_CODES, "language must be Whisper's supported lang code: " + " ".join(WHISPER_LANG_CODES)
if lan == "uk":
import tokenize_uk
class UkrainianTokenizer:
def split(self, text):
return tokenize_uk.tokenize_sents(text)
return UkrainianTokenizer()
# supported by fast-mosestokenizer
if lan in "as bn ca cs de el en es et fi fr ga gu hi hu is it kn lt lv ml mni mr nl or pa pl pt ro ru sk sl sv ta te yue zh".split():
from mosestokenizer import MosesTokenizer
return MosesTokenizer(lan)
# the following languages are in Whisper, but not in wtpsplit:
if lan in "as ba bo br bs fo haw hr ht jw lb ln lo mi nn oc sa sd sn so su sw tk tl tt".split():
logger.debug(f"{lan} code is not supported by wtpsplit. Going to use None lang_code option.")
lan = None
from wtpsplit import WtP
# downloads the model from huggingface on the first use
wtp = WtP("wtp-canine-s-12l-no-adapters")
class WtPtok:
def split(self, sent):
return wtp.split(sent, lang_code=lan)
return WtPtok()
def add_shared_args(parser):
"""shared args for simulation (this entry point) and server
parser: argparse.ArgumentParser object
"""
parser.add_argument('--min-chunk-size', type=float, default=1.0, help='Minimum audio chunk size in seconds. It waits up to this time to do processing. If the processing takes shorter time, it waits, otherwise it processes the whole segment that was received by this time.')
parser.add_argument('--model', type=str, default='large-v2', choices="tiny.en,tiny,base.en,base,small.en,small,medium.en,medium,large-v1,large-v2,large-v3,large".split(","),help="Name size of the Whisper model to use (default: large-v2). The model is automatically downloaded from the model hub if not present in model cache dir.")
parser.add_argument('--model_cache_dir', type=str, default=None, help="Overriding the default model cache dir where models downloaded from the hub are saved")
parser.add_argument('--model_dir', type=str, default=None, help="Dir where Whisper model.bin and other files are saved. This option overrides --model and --model_cache_dir parameter.")
parser.add_argument('--lan', '--language', type=str, default='auto', help="Source language code, e.g. en,de,cs, or 'auto' for language detection.")
parser.add_argument('--task', type=str, default='transcribe', choices=["transcribe","translate"],help="Transcribe or translate.")
parser.add_argument('--backend', type=str, default="faster-whisper", choices=["faster-whisper", "whisper_timestamped", "openai-api"],help='Load only this backend for Whisper processing.')
parser.add_argument('--vac', action="store_true", default=False, help='Use VAC = voice activity controller. Recommended. Requires torch.')
parser.add_argument('--vac-chunk-size', type=float, default=0.04, help='VAC sample size in seconds.')
parser.add_argument('--vad', action="store_true", default=False, help='Use VAD = voice activity detection, with the default parameters.')
parser.add_argument('--buffer_trimming', type=str, default="segment", choices=["sentence", "segment"],help='Buffer trimming strategy -- trim completed sentences marked with punctuation mark and detected by sentence segmenter, or the completed segments returned by Whisper. Sentence segmenter must be installed for "sentence" option.')
parser.add_argument('--buffer_trimming_sec', type=float, default=15, help='Buffer trimming length threshold in seconds. If buffer length is longer, trimming sentence/segment is triggered.')
parser.add_argument("-l", "--log-level", dest="log_level", choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help="Set the log level", default='DEBUG')
def asr_factory(args, logfile=sys.stderr):
"""
Creates and configures an ASR and ASR Online instance based on the specified backend and arguments.
"""
backend = args.backend
if backend == "openai-api":
logger.debug("Using OpenAI API.")
asr = OpenaiApiASR(lan=args.lan)
else:
if backend == "faster-whisper":
asr_cls = FasterWhisperASR
else:
asr_cls = WhisperTimestampedASR
# Only for FasterWhisperASR and WhisperTimestampedASR
size = args.model
t = time.time()
logger.info(f"Loading Whisper {size} model for {args.lan}...")
asr = asr_cls(modelsize=size, lan=args.lan, cache_dir=args.model_cache_dir, model_dir=args.model_dir)
e = time.time()
logger.info(f"done. It took {round(e-t,2)} seconds.")
# Apply common configurations
if getattr(args, 'vad', False): # Checks if VAD argument is present and True
logger.info("Setting VAD filter")
asr.use_vad()
language = args.lan
if args.task == "translate":
asr.set_translate_task()
tgt_language = "en" # Whisper translates into English
else:
tgt_language = language # Whisper transcribes in this language
# Create the tokenizer
if args.buffer_trimming == "sentence":
tokenizer = create_tokenizer(tgt_language)
else:
tokenizer = None
# Create the OnlineASRProcessor
if args.vac:
online = VACOnlineASRProcessor(args.min_chunk_size, asr,tokenizer,logfile=logfile,buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec))
else:
online = OnlineASRProcessor(asr,tokenizer,logfile=logfile,buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec))
return asr, online
def set_logging(args,logger,other="_server"):
logging.basicConfig(#format='%(name)s
format='%(levelname)s\t%(message)s')
logger.setLevel(args.log_level)
logging.getLogger("whisper_online"+other).setLevel(args.log_level)
# logging.getLogger("whisper_online_server").setLevel(args.log_level)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('audio_path', type=str, help="Filename of 16kHz mono channel wav, on which live streaming is simulated.")
add_shared_args(parser)
parser.add_argument('--start_at', type=float, default=0.0, help='Start processing audio at this time.')
parser.add_argument('--offline', action="store_true", default=False, help='Offline mode.')
parser.add_argument('--comp_unaware', action="store_true", default=False, help='Computationally unaware simulation.')
args = parser.parse_args()
# reset to store stderr to different file stream, e.g. open(os.devnull,"w")
logfile = sys.stderr
if args.offline and args.comp_unaware:
logger.error("No or one option from --offline and --comp_unaware are available, not both. Exiting.")
sys.exit(1)
# if args.log_level:
# logging.basicConfig(format='whisper-%(levelname)s:%(name)s: %(message)s',
# level=getattr(logging, args.log_level))
set_logging(args,logger)
audio_path = args.audio_path
SAMPLING_RATE = 16000
duration = len(load_audio(audio_path))/SAMPLING_RATE
logger.info("Audio duration is: %2.2f seconds" % duration)
asr, online = asr_factory(args, logfile=logfile)
if args.vac:
min_chunk = args.vac_chunk_size
else:
min_chunk = args.min_chunk_size
# load the audio into the LRU cache before we start the timer
a = load_audio_chunk(audio_path,0,1)
# warm up the ASR because the very first transcribe takes much more time than the other
asr.transcribe(a)
beg = args.start_at
start = time.time()-beg
def output_transcript(o, now=None):
# output format in stdout is like:
# 4186.3606 0 1720 Takhle to je
# - the first three words are:
# - emission time from beginning of processing, in milliseconds
# - beg and end timestamp of the text segment, as estimated by Whisper model. The timestamps are not accurate, but they're useful anyway
# - the next words: segment transcript
if now is None:
now = time.time()-start
if o[0] is not None:
print("%1.4f %1.0f %1.0f %s" % (now*1000, o[0]*1000,o[1]*1000,o[2]),file=logfile,flush=True)
print("%1.4f %1.0f %1.0f %s" % (now*1000, o[0]*1000,o[1]*1000,o[2]),flush=True)
else:
# No text, so no output
pass
if args.offline: ## offline mode processing (for testing/debugging)
a = load_audio(audio_path)
online.insert_audio_chunk(a)
try:
o = online.process_iter()
except AssertionError as e:
logger.error(f"assertion error: {repr(e)}")
else:
output_transcript(o)
now = None
elif args.comp_unaware: # computational unaware mode
end = beg + min_chunk
while True:
a = load_audio_chunk(audio_path,beg,end)
online.insert_audio_chunk(a)
try:
o = online.process_iter()
except AssertionError as e:
logger.error(f"assertion error: {repr(e)}")
pass
else:
output_transcript(o, now=end)
logger.debug(f"## last processed {end:.2f}s")
if end >= duration:
break
beg = end
if end + min_chunk > duration:
end = duration
else:
end += min_chunk
now = duration
else: # online = simultaneous mode
end = 0
while True:
now = time.time() - start
if now < end+min_chunk:
time.sleep(min_chunk+end-now)
end = time.time() - start
a = load_audio_chunk(audio_path,beg,end)
beg = end
online.insert_audio_chunk(a)
try:
o = online.process_iter()
except AssertionError as e:
logger.error(f"assertion error: {e}")
pass
else:
output_transcript(o)
now = time.time() - start
logger.debug(f"## last processed {end:.2f} s, now is {now:.2f}, the latency is {now-end:.2f}")
if end >= duration:
break
now = None
o = online.finish()
output_transcript(o, now=now)
|