Spaces:
Sleeping
Sleeping
WIP
Browse files- faster-whisper-server-client.py +225 -0
- ws_server.py +175 -0
faster-whisper-server-client.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import threading
|
4 |
+
import time
|
5 |
+
import websocket
|
6 |
+
import os
|
7 |
+
|
8 |
+
import librosa
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
# Define the default WebSocket endpoint
|
12 |
+
DEFAULT_WS_URL = "ws://localhost:8000/v1/audio/transcriptions"
|
13 |
+
|
14 |
+
|
15 |
+
def parse_arguments():
|
16 |
+
parser = argparse.ArgumentParser(description="Stream audio to the transcription WebSocket endpoint.")
|
17 |
+
parser.add_argument("audio_file", help="Path to the input audio file.")
|
18 |
+
parser.add_argument("--url", default=DEFAULT_WS_URL, help="WebSocket endpoint URL.")
|
19 |
+
parser.add_argument("--model", type=str, help="Model name to use for transcription.")
|
20 |
+
parser.add_argument("--language", type=str, help="Language code for transcription.")
|
21 |
+
parser.add_argument(
|
22 |
+
"--response_format",
|
23 |
+
type=str,
|
24 |
+
default="verbose_json",
|
25 |
+
choices=["text", "json", "verbose_json"],
|
26 |
+
help="Response format.",
|
27 |
+
)
|
28 |
+
parser.add_argument("--temperature", type=float, default=0.0, help="Temperature for transcription.")
|
29 |
+
parser.add_argument("--vad_filter", action="store_true", help="Enable voice activity detection filter.")
|
30 |
+
parser.add_argument("--chunk_duration", type=float, default=1.0, help="Duration of each audio chunk in seconds.")
|
31 |
+
return parser.parse_args()
|
32 |
+
|
33 |
+
|
34 |
+
def preprocess_audio(audio_file, target_sr=16000):
|
35 |
+
"""
|
36 |
+
Load the audio file, convert to mono 16kHz, and return the audio data.
|
37 |
+
"""
|
38 |
+
if audio_file.endswith(".mp3"):
|
39 |
+
# Convert MP3 to WAV using ffmpeg
|
40 |
+
wav_file = audio_file.replace(".mp3", ".wav")
|
41 |
+
if not os.path.exists(wav_file):
|
42 |
+
command = f'ffmpeg -i "{audio_file}" -ac 1 -ar {target_sr} "{wav_file}"'
|
43 |
+
print(f"Converting MP3 to WAV: {command}")
|
44 |
+
os.system(command)
|
45 |
+
audio_file = wav_file
|
46 |
+
|
47 |
+
print(f"Loading audio file {audio_file}")
|
48 |
+
audio_data, sr = librosa.load(audio_file, sr=target_sr, mono=True)
|
49 |
+
return audio_data, sr
|
50 |
+
|
51 |
+
def chunk_audio(audio_data, sr, chunk_duration):
|
52 |
+
"""
|
53 |
+
Split the audio data into chunks of specified duration.
|
54 |
+
"""
|
55 |
+
chunk_samples = int(chunk_duration * sr)
|
56 |
+
total_samples = len(audio_data)
|
57 |
+
chunks = [
|
58 |
+
audio_data[i:i + chunk_samples]
|
59 |
+
for i in range(0, total_samples, chunk_samples)
|
60 |
+
]
|
61 |
+
print(f"Split audio into {len(chunks)} chunks of {chunk_duration} seconds each.")
|
62 |
+
return chunks
|
63 |
+
|
64 |
+
|
65 |
+
def build_query_params(args):
|
66 |
+
"""
|
67 |
+
Build the query parameters for the WebSocket URL based on command-line arguments.
|
68 |
+
"""
|
69 |
+
params = {}
|
70 |
+
if args.model:
|
71 |
+
params["model"] = args.model
|
72 |
+
if args.language:
|
73 |
+
params["language"] = args.language
|
74 |
+
if args.response_format:
|
75 |
+
params["response_format"] = args.response_format
|
76 |
+
if args.temperature is not None:
|
77 |
+
params["temperature"] = str(args.temperature)
|
78 |
+
if args.vad_filter:
|
79 |
+
params["vad_filter"] = "true"
|
80 |
+
return params
|
81 |
+
|
82 |
+
|
83 |
+
def websocket_url_with_params(base_url, params):
|
84 |
+
"""
|
85 |
+
Append query parameters to the WebSocket URL.
|
86 |
+
"""
|
87 |
+
from urllib.parse import urlencode
|
88 |
+
|
89 |
+
if params:
|
90 |
+
query_string = urlencode(params)
|
91 |
+
url = f"{base_url}?{query_string}"
|
92 |
+
else:
|
93 |
+
url = base_url
|
94 |
+
return url
|
95 |
+
|
96 |
+
|
97 |
+
def on_message(ws, message):
|
98 |
+
"""
|
99 |
+
Callback function when a message is received from the server.
|
100 |
+
"""
|
101 |
+
try:
|
102 |
+
data = json.loads(message)
|
103 |
+
# Accumulate transcriptions
|
104 |
+
if ws.args.response_format == "verbose_json":
|
105 |
+
segments = data.get('segments', [])
|
106 |
+
ws.transcriptions.extend(segments)
|
107 |
+
for segment in segments:
|
108 |
+
print(f"Received segment: {segment['text']}")
|
109 |
+
else:
|
110 |
+
# For 'json' or 'text' format
|
111 |
+
ws.transcriptions.append(data)
|
112 |
+
print(f"Transcription: {data['text']}")
|
113 |
+
except json.JSONDecodeError:
|
114 |
+
print(f"Received non-JSON message: {message}")
|
115 |
+
|
116 |
+
|
117 |
+
def on_error(ws, error):
|
118 |
+
"""
|
119 |
+
Callback function when an error occurs.
|
120 |
+
"""
|
121 |
+
print(f"WebSocket error: {error}")
|
122 |
+
|
123 |
+
|
124 |
+
def on_close(ws, close_status_code, close_msg):
|
125 |
+
"""
|
126 |
+
Callback function when the WebSocket connection is closed.
|
127 |
+
"""
|
128 |
+
print("WebSocket connection closed")
|
129 |
+
|
130 |
+
|
131 |
+
def on_open(ws):
|
132 |
+
"""
|
133 |
+
Callback function when the WebSocket connection is opened.
|
134 |
+
"""
|
135 |
+
print("WebSocket connection opened")
|
136 |
+
ws.transcriptions = [] # Initialize the list to store transcriptions
|
137 |
+
|
138 |
+
|
139 |
+
def send_audio_chunks(ws, audio_chunks, sr):
|
140 |
+
"""
|
141 |
+
Send audio chunks to the WebSocket server.
|
142 |
+
"""
|
143 |
+
for idx, chunk in enumerate(audio_chunks):
|
144 |
+
# Ensure little-endian format
|
145 |
+
audio_bytes = chunk.astype('<f4').tobytes()
|
146 |
+
ws.send(audio_bytes, opcode=websocket.ABNF.OPCODE_BINARY)
|
147 |
+
print(f"Sent chunk {idx + 1}/{len(audio_chunks)}")
|
148 |
+
time.sleep(0.1) # Small delay to simulate real-time streaming
|
149 |
+
print("All audio chunks sent")
|
150 |
+
# Optionally, wait to receive remaining messages
|
151 |
+
time.sleep(2)
|
152 |
+
ws.close()
|
153 |
+
print("Closed WebSocket connection")
|
154 |
+
|
155 |
+
|
156 |
+
|
157 |
+
def format_timestamp(seconds):
|
158 |
+
"""
|
159 |
+
Convert seconds to SRT timestamp format (HH:MM:SS,mmm).
|
160 |
+
"""
|
161 |
+
total_milliseconds = int(seconds * 1000)
|
162 |
+
hours = total_milliseconds // (3600 * 1000)
|
163 |
+
minutes = (total_milliseconds % (3600 * 1000)) // (60 * 1000)
|
164 |
+
secs = (total_milliseconds % (60 * 1000)) // 1000
|
165 |
+
milliseconds = total_milliseconds % 1000
|
166 |
+
return f"{hours:02}:{minutes:02}:{secs:02},{milliseconds:03}"
|
167 |
+
|
168 |
+
|
169 |
+
def generate_srt(transcriptions):
|
170 |
+
"""
|
171 |
+
Generate and print SRT content from transcriptions.
|
172 |
+
"""
|
173 |
+
print("\nGenerated SRT:")
|
174 |
+
for idx, segment in enumerate(transcriptions, 1):
|
175 |
+
start_time = format_timestamp(segment['start'])
|
176 |
+
end_time = format_timestamp(segment['end'])
|
177 |
+
text = segment['text']
|
178 |
+
print(f"{idx}")
|
179 |
+
print(f"{start_time} --> {end_time}")
|
180 |
+
print(f"{text}\n")
|
181 |
+
|
182 |
+
|
183 |
+
def run_websocket_client(args):
|
184 |
+
"""
|
185 |
+
Run the WebSocket client to stream audio and receive transcriptions.
|
186 |
+
"""
|
187 |
+
audio_data, sr = preprocess_audio(args.audio_file)
|
188 |
+
audio_chunks = chunk_audio(audio_data, sr, args.chunk_duration)
|
189 |
+
|
190 |
+
params = build_query_params(args)
|
191 |
+
ws_url = websocket_url_with_params(args.url, params)
|
192 |
+
|
193 |
+
ws = websocket.WebSocketApp(
|
194 |
+
ws_url,
|
195 |
+
on_open=on_open,
|
196 |
+
on_message=on_message,
|
197 |
+
on_error=on_error,
|
198 |
+
on_close=on_close,
|
199 |
+
)
|
200 |
+
ws.args = args # Attach args to ws to access inside callbacks
|
201 |
+
|
202 |
+
# Run the WebSocket in a separate thread to allow sending and receiving simultaneously
|
203 |
+
ws_thread = threading.Thread(target=ws.run_forever)
|
204 |
+
ws_thread.start()
|
205 |
+
|
206 |
+
# Wait for the connection to open
|
207 |
+
while not ws.sock or not ws.sock.connected:
|
208 |
+
time.sleep(0.1)
|
209 |
+
|
210 |
+
# Send the audio chunks
|
211 |
+
send_audio_chunks(ws, audio_chunks, sr)
|
212 |
+
|
213 |
+
# Wait for the WebSocket thread to finish
|
214 |
+
ws_thread.join()
|
215 |
+
|
216 |
+
# Generate SRT if transcriptions are available
|
217 |
+
if hasattr(ws, 'transcriptions') and ws.transcriptions:
|
218 |
+
generate_srt(ws.transcriptions)
|
219 |
+
else:
|
220 |
+
print("No transcriptions received.")
|
221 |
+
|
222 |
+
|
223 |
+
if __name__ == "__main__":
|
224 |
+
args = parse_arguments()
|
225 |
+
run_websocket_client(args)
|
ws_server.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import the necessary components from whisper_online.py
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
|
5 |
+
import librosa
|
6 |
+
import soundfile
|
7 |
+
import uvicorn
|
8 |
+
from fastapi import FastAPI, WebSocket
|
9 |
+
from starlette.websockets import WebSocketDisconnect
|
10 |
+
|
11 |
+
from libs.whisper_streaming.whisper_online import (
|
12 |
+
ASRBase,
|
13 |
+
OnlineASRProcessor,
|
14 |
+
VACOnlineASRProcessor,
|
15 |
+
add_shared_args,
|
16 |
+
asr_factory,
|
17 |
+
set_logging,
|
18 |
+
create_tokenizer,
|
19 |
+
load_audio,
|
20 |
+
load_audio_chunk, OpenaiApiASR,
|
21 |
+
set_logging
|
22 |
+
)
|
23 |
+
|
24 |
+
import argparse
|
25 |
+
import sys
|
26 |
+
import numpy as np
|
27 |
+
import io
|
28 |
+
import soundfile as sf
|
29 |
+
import wave
|
30 |
+
import requests
|
31 |
+
import argparse
|
32 |
+
|
33 |
+
logger = logging.getLogger(__name__)
|
34 |
+
|
35 |
+
SAMPLING_RATE = 16000
|
36 |
+
WARMUP_FILE = "mono16k.test_hebrew.wav"
|
37 |
+
AUDIO_FILE_URL = "https://raw.githubusercontent.com/AshDavid12/runpod-serverless-forked/main/test_hebrew.wav"
|
38 |
+
|
39 |
+
is_first = True
|
40 |
+
asr, online = None, None
|
41 |
+
min_limit = None # min_chunk*SAMPLING_RATE
|
42 |
+
app = FastAPI()
|
43 |
+
|
44 |
+
|
45 |
+
def convert_to_mono_16k(input_wav: str, output_wav: str) -> None:
|
46 |
+
"""
|
47 |
+
Converts any .wav file to mono 16 kHz.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
input_wav (str): Path to the input .wav file.
|
51 |
+
output_wav (str): Path to save the output .wav file with mono 16 kHz.
|
52 |
+
"""
|
53 |
+
# Step 1: Load the audio file with librosa
|
54 |
+
audio_data, original_sr = librosa.load(input_wav, sr=None, mono=False) # Load at original sampling rate
|
55 |
+
logger.info("Loaded audio with shape: %s, original sampling rate: %d" % (audio_data.shape, original_sr))
|
56 |
+
|
57 |
+
# Step 2: If the audio has multiple channels, average them to make it mono
|
58 |
+
if audio_data.ndim > 1:
|
59 |
+
audio_data = librosa.to_mono(audio_data)
|
60 |
+
|
61 |
+
# Step 3: Resample the audio to 16 kHz
|
62 |
+
resampled_audio = librosa.resample(audio_data, orig_sr=original_sr, target_sr=SAMPLING_RATE)
|
63 |
+
|
64 |
+
# Step 4: Save the resampled audio as a .wav file in mono at 16 kHz
|
65 |
+
sf.write(output_wav, resampled_audio, SAMPLING_RATE)
|
66 |
+
|
67 |
+
logger.info(f"Converted audio saved to {output_wav}")
|
68 |
+
|
69 |
+
def download_warmup_file():
|
70 |
+
# Download the audio file if not already present
|
71 |
+
audio_file_path = "test_hebrew.wav"
|
72 |
+
if not os.path.exists(WARMUP_FILE):
|
73 |
+
if not os.path.exists(audio_file_path):
|
74 |
+
response = requests.get(AUDIO_FILE_URL)
|
75 |
+
with open(audio_file_path, 'wb') as f:
|
76 |
+
f.write(response.content)
|
77 |
+
|
78 |
+
convert_to_mono_16k(audio_file_path, WARMUP_FILE)
|
79 |
+
|
80 |
+
|
81 |
+
async def receive_audio_chunk(self, websocket: WebSocket):
|
82 |
+
# receive all audio that is available by this time
|
83 |
+
# blocks operation if less than self.min_chunk seconds is available
|
84 |
+
# unblocks if connection is closed or a chunk is available
|
85 |
+
out = []
|
86 |
+
while sum(len(x) for x in out) < min_limit:
|
87 |
+
raw_bytes = await websocket.receive_bytes()
|
88 |
+
if not raw_bytes:
|
89 |
+
break
|
90 |
+
|
91 |
+
sf = soundfile.SoundFile(io.BytesIO(raw_bytes), channels=1,endian="LITTLE",samplerate=SAMPLING_RATE, subtype="PCM_16",format="RAW")
|
92 |
+
audio, _ = librosa.load(sf,sr=SAMPLING_RATE,dtype=np.float32)
|
93 |
+
out.append(audio)
|
94 |
+
|
95 |
+
if not out:
|
96 |
+
return None
|
97 |
+
|
98 |
+
conc = np.concatenate(out)
|
99 |
+
if self.is_first and len(conc) < min_limit:
|
100 |
+
return None
|
101 |
+
self.is_first = False
|
102 |
+
return conc
|
103 |
+
|
104 |
+
# Define WebSocket endpoint
|
105 |
+
@app.websocket("/ws_transcribe_streaming")
|
106 |
+
async def websocket_transcribe(websocket: WebSocket):
|
107 |
+
logger.info("New WebSocket connection request received.")
|
108 |
+
await websocket.accept()
|
109 |
+
logger.info("WebSocket connection established successfully.")
|
110 |
+
|
111 |
+
asr, online = asr_factory(args)
|
112 |
+
|
113 |
+
# warm up the ASR because the very first transcribe takes more time than the others.
|
114 |
+
# Test results in https://github.com/ufal/whisper_streaming/pull/81
|
115 |
+
a = load_audio_chunk(WARMUP_FILE, 0, 1)
|
116 |
+
asr.transcribe(a)
|
117 |
+
logger.info("Whisper is warmed up.")
|
118 |
+
global min_limit
|
119 |
+
min_limit = args.min_chunk_size * SAMPLING_RATE
|
120 |
+
|
121 |
+
try:
|
122 |
+
out = []
|
123 |
+
while True:
|
124 |
+
try:
|
125 |
+
# Receive JSON data
|
126 |
+
raw_bytes = await websocket.receive_json()
|
127 |
+
|
128 |
+
sf = soundfile.SoundFile(io.BytesIO(raw_bytes), channels=1, endian="LITTLE", samplerate=SAMPLING_RATE,
|
129 |
+
subtype="PCM_16", format="RAW")
|
130 |
+
audio, _ = librosa.load(sf, sr=SAMPLING_RATE, dtype=np.float32)
|
131 |
+
out.append(audio)
|
132 |
+
|
133 |
+
# Call the transcribe function
|
134 |
+
# segments, info = await asyncio.to_thread(model.transcribe,
|
135 |
+
segments, info = model.transcribe(
|
136 |
+
audio_file_path,
|
137 |
+
language='he',
|
138 |
+
initial_prompt=input_data.init_prompt,
|
139 |
+
beam_size=5,
|
140 |
+
word_timestamps=True,
|
141 |
+
condition_on_previous_text=True
|
142 |
+
)
|
143 |
+
|
144 |
+
# Convert segments to list and serialize
|
145 |
+
segments_list = list(segments)
|
146 |
+
segments_serializable = [segment_to_dict(s) for s in segments_list]
|
147 |
+
logger.info(get_raw_words_from_segments(segments_list))
|
148 |
+
# Send the serialized segments back to the client
|
149 |
+
await websocket.send_json(segments_serializable)
|
150 |
+
|
151 |
+
except WebSocketDisconnect:
|
152 |
+
logger.info("WebSocket connection closed by the client.")
|
153 |
+
break
|
154 |
+
except Exception as e:
|
155 |
+
logger.error(f"Unexpected error during WebSocket transcription: {e}")
|
156 |
+
await websocket.send_json({"error": str(e)})
|
157 |
+
finally:
|
158 |
+
logger.info("Cleaning up and closing WebSocket connection.")
|
159 |
+
|
160 |
+
def main():
|
161 |
+
args = argparse.ArgumentParser()
|
162 |
+
args = add_shared_args(args)
|
163 |
+
args.parse_args([
|
164 |
+
'--lan', 'he',
|
165 |
+
'--model', 'ivrit-ai/faster-whisper-v2-d4',
|
166 |
+
'--backend', 'faster-whisper',
|
167 |
+
'--vad',
|
168 |
+
# '--vac', '--buffer_trimming', 'segment', '--buffer_trimming_sec', '15', '--min_chunk_size', '1.0', '--vac_chunk_size', '0.04', '--start_at', '0.0', '--offline', '--comp_unaware', '--log_level', 'DEBUG'
|
169 |
+
])
|
170 |
+
|
171 |
+
|
172 |
+
global asr, online
|
173 |
+
|
174 |
+
|
175 |
+
uvicorn.run(app)
|