changes
Browse files- app.py +103 -0
- car_price_dataset.csv +0 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import seaborn as sns
|
6 |
+
from sklearn.cluster import AgglomerativeClustering
|
7 |
+
from sklearn.metrics import confusion_matrix
|
8 |
+
|
9 |
+
# Load dataset
|
10 |
+
@st.cache_data
|
11 |
+
def load_data():
|
12 |
+
file_path = "car_price_dataset.csv" # Ensure this file is in the same directory
|
13 |
+
return pd.read_csv(file_path)
|
14 |
+
|
15 |
+
df = load_data()
|
16 |
+
|
17 |
+
# Streamlit App Title
|
18 |
+
st.title("🚗 Car Price Clustering & Evaluation")
|
19 |
+
|
20 |
+
# Creating Tabs
|
21 |
+
tab1, tab2, tab3 = st.tabs(["📊 Dataset Overview", "📈 Visual Matrix", "⚙️ User Input for Clustering"])
|
22 |
+
|
23 |
+
# --- TAB 1: Dataset Overview ---
|
24 |
+
with tab1:
|
25 |
+
st.write("## Dataset Overview")
|
26 |
+
st.write(df.head())
|
27 |
+
st.write(df.describe())
|
28 |
+
|
29 |
+
# --- TAB 2: Visualization Matrix ---
|
30 |
+
with tab2:
|
31 |
+
st.write("## Data Visualization")
|
32 |
+
|
33 |
+
# Select numerical features
|
34 |
+
numerical_df = df.select_dtypes(include=[np.number])
|
35 |
+
|
36 |
+
# Correlation Heatmap
|
37 |
+
st.write("### Correlation Heatmap")
|
38 |
+
fig, ax = plt.subplots(figsize=(8, 5))
|
39 |
+
sns.heatmap(numerical_df.corr(), annot=True, cmap="coolwarm", fmt=".2f")
|
40 |
+
st.pyplot(fig)
|
41 |
+
|
42 |
+
# Confusion Matrix
|
43 |
+
st.write("### Confusion Matrix")
|
44 |
+
selected_features = ["Engine_Size", "Mileage", "Price"]
|
45 |
+
if all(f in numerical_df.columns for f in selected_features):
|
46 |
+
X = df[selected_features].dropna().values
|
47 |
+
n_clusters = 3 # Default cluster count
|
48 |
+
|
49 |
+
# Apply Hierarchical Clustering
|
50 |
+
hc = AgglomerativeClustering(n_clusters=n_clusters, linkage='ward')
|
51 |
+
labels = hc.fit_predict(X)
|
52 |
+
|
53 |
+
# Generate dummy "true labels" (for demonstration)
|
54 |
+
true_labels = np.random.randint(0, n_clusters, len(labels))
|
55 |
+
|
56 |
+
cm = confusion_matrix(true_labels, labels)
|
57 |
+
fig, ax = plt.subplots(figsize=(5, 4))
|
58 |
+
sns.heatmap(cm, annot=True, cmap="Blues", fmt="d")
|
59 |
+
plt.xlabel("Predicted")
|
60 |
+
plt.ylabel("Actual")
|
61 |
+
st.pyplot(fig)
|
62 |
+
else:
|
63 |
+
st.warning("Not enough numerical data for clustering.")
|
64 |
+
|
65 |
+
# Scatter Plot
|
66 |
+
st.write("### Scatter Plot")
|
67 |
+
scatter_x = st.selectbox("Select X-axis", numerical_df.columns, index=0)
|
68 |
+
scatter_y = st.selectbox("Select Y-axis", numerical_df.columns, index=1)
|
69 |
+
|
70 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
71 |
+
sns.scatterplot(x=df[scatter_x], y=df[scatter_y], alpha=0.7)
|
72 |
+
plt.xlabel(scatter_x)
|
73 |
+
plt.ylabel(scatter_y)
|
74 |
+
st.pyplot(fig)
|
75 |
+
|
76 |
+
# --- TAB 3: User Input & Clustering ---
|
77 |
+
with tab3:
|
78 |
+
st.write("## Perform Clustering")
|
79 |
+
|
80 |
+
numerical_features = numerical_df.columns.tolist()
|
81 |
+
selected_features = st.multiselect("Select features for clustering", numerical_features, default=["Engine_Size", "Mileage", "Price"])
|
82 |
+
|
83 |
+
if len(selected_features) < 2:
|
84 |
+
st.warning("Please select at least two numerical features.")
|
85 |
+
else:
|
86 |
+
X = df[selected_features].dropna().values # Prepare data
|
87 |
+
|
88 |
+
# Choose Number of Clusters (With + / - Buttons)
|
89 |
+
n_clusters = st.number_input("Select Number of Clusters", min_value=2, max_value=10, value=3, step=1)
|
90 |
+
|
91 |
+
# Predict Button
|
92 |
+
if st.button("Predict Clusters"):
|
93 |
+
# Apply Hierarchical Clustering
|
94 |
+
hc = AgglomerativeClustering(n_clusters=n_clusters, linkage='ward')
|
95 |
+
labels = hc.fit_predict(X)
|
96 |
+
|
97 |
+
# Display results
|
98 |
+
df["Cluster"] = labels
|
99 |
+
st.write("### Clustered Data")
|
100 |
+
st.write(df[selected_features + ["Cluster"]].head(10))
|
101 |
+
|
102 |
+
st.success("Clustering Complete! 🎉")
|
103 |
+
|
car_price_dataset.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
panda
|
3 |
+
numpy
|
4 |
+
matplotlib
|
5 |
+
scipy
|
6 |
+
scikit-learn
|