3v324v23 commited on
Commit
6d8ca31
·
1 Parent(s): b29094a
Files changed (3) hide show
  1. app.py +152 -0
  2. requirements.txt +6 -0
  3. shopping_trends.csv +0 -0
app.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ import matplotlib.pyplot as plt
5
+ import seaborn as sns
6
+ from sklearn.cluster import KMeans
7
+ from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder
8
+ from sklearn.pipeline import Pipeline
9
+ from sklearn.metrics import silhouette_score, davies_bouldin_score, calinski_harabasz_score
10
+
11
+ st.title("Sales Trend Prediction using KMeans Clustering")
12
+
13
+ def load_data():
14
+ return pd.read_csv("shopping_trends.csv")
15
+
16
+ df = load_data()
17
+
18
+ # Select relevant features for clustering
19
+ features = ['Gender', 'Item Purchased', 'Previous Purchases', 'Frequency of Purchases', 'Purchase Amount (USD)']
20
+ df_filtered = df[features].copy()
21
+
22
+ # Convert Frequency of Purchases to string
23
+ df_filtered['Frequency of Purchases'] = df_filtered['Frequency of Purchases'].astype(str)
24
+
25
+ # One-hot encode categorical features
26
+ categorical_features = ['Gender', 'Item Purchased', 'Frequency of Purchases']
27
+ numerical_features = ['Previous Purchases', 'Purchase Amount (USD)']
28
+
29
+ ohe = OneHotEncoder(drop='first', sparse_output=False)
30
+ encoded_cats = ohe.fit_transform(df_filtered[categorical_features])
31
+ categorical_df = pd.DataFrame(encoded_cats, columns=ohe.get_feature_names_out(categorical_features), index=df.index)
32
+
33
+ df_processed = pd.concat([df_filtered[numerical_features], categorical_df], axis=1)
34
+
35
+ # Standardizing the data
36
+ scaler = StandardScaler()
37
+ X_scaled = scaler.fit_transform(df_processed)
38
+
39
+ # KMeans Clustering
40
+ n_clusters = 3 # Set the number of clusters
41
+ kmeans = KMeans(n_clusters=n_clusters, random_state=42)
42
+ df['Cluster'] = kmeans.fit_predict(X_scaled)
43
+
44
+ # Compute Clustering Metrics
45
+ silhouette = silhouette_score(X_scaled, df['Cluster'])
46
+ davies_bouldin = davies_bouldin_score(X_scaled, df['Cluster'])
47
+ calinski_harabasz = calinski_harabasz_score(X_scaled, df['Cluster'])
48
+
49
+ def predict_cluster(user_input):
50
+ """Predicts the cluster for a new user input."""
51
+ user_df = pd.DataFrame([user_input])
52
+ user_df['Frequency of Purchases'] = user_df['Frequency of Purchases'].astype(str)
53
+ user_cats = ohe.transform(user_df[categorical_features])
54
+ user_processed = pd.concat([user_df[numerical_features], pd.DataFrame(user_cats, columns=ohe.get_feature_names_out(categorical_features))], axis=1)
55
+ user_scaled = scaler.transform(user_processed)
56
+ return kmeans.predict(user_scaled)[0]
57
+
58
+ # Create Tabs
59
+ tab1, tab2, tab3 = st.tabs(["Dataset & Metrics", "Visualization", "Sales Trend Prediction"])
60
+
61
+ with tab1:
62
+ st.subheader("Dataset Preview")
63
+ st.write(df.head())
64
+
65
+ st.subheader("Clustering Metrics")
66
+ st.write(f"Number of Clusters: {n_clusters}")
67
+ st.write(f"Silhouette Score: {silhouette:.4f}")
68
+ st.write(f"Davies-Bouldin Score: {davies_bouldin:.4f}")
69
+ st.write(f"Calinski-Harabasz Score: {calinski_harabasz:.4f}")
70
+
71
+ with tab2:
72
+ st.subheader("Data Visualizations")
73
+
74
+ # Elbow Method Visualization
75
+ distortions = []
76
+ K_range = range(2, 11)
77
+ for k in K_range:
78
+ kmeans_tmp = KMeans(n_clusters=k, random_state=42)
79
+ kmeans_tmp.fit(X_scaled)
80
+ distortions.append(kmeans_tmp.inertia_)
81
+
82
+ fig, ax = plt.subplots()
83
+ ax.plot(K_range, distortions, marker='o')
84
+ ax.set_xlabel('Number of Clusters')
85
+ ax.set_ylabel('Distortion')
86
+ ax.set_title('Elbow Method for Optimal K')
87
+ st.pyplot(fig)
88
+
89
+ # Cluster Distribution Plot
90
+ fig, ax = plt.subplots()
91
+ sns.countplot(x=df['Cluster'], palette='viridis', ax=ax)
92
+ ax.set_xlabel('Cluster')
93
+ ax.set_ylabel('Count')
94
+ ax.set_title('Cluster Distribution')
95
+ st.pyplot(fig)
96
+
97
+ # Visualizations for Item Purchased distribution
98
+ fig, ax = plt.subplots(figsize=(10, 5))
99
+ sns.countplot(y=df['Item Purchased'], order=df['Item Purchased'].value_counts().index, palette='viridis', ax=ax)
100
+ ax.set_title("Overall Item Purchase Distribution")
101
+ ax.set_xlabel("Count")
102
+ ax.set_ylabel("Item Purchased")
103
+ st.pyplot(fig)
104
+
105
+ # Heatmap for Matrix Visualization
106
+ st.subheader("Feature Correlation Matrix")
107
+ label_encoders = {}
108
+ for col in categorical_features:
109
+ le = LabelEncoder()
110
+ df[col + '_Numeric'] = le.fit_transform(df[col])
111
+ label_encoders[col] = le
112
+
113
+ correlation_matrix = df[['Gender_Numeric', 'Purchase Amount (USD)', 'Previous Purchases', 'Frequency of Purchases_Numeric']].corr()
114
+ fig, ax = plt.subplots(figsize=(10, 6))
115
+ sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f', ax=ax)
116
+ st.pyplot(fig)
117
+
118
+ with tab3:
119
+ st.subheader("Enter Customer Details")
120
+ gender = st.selectbox("Gender", df['Gender'].unique())
121
+ item_purchased = st.selectbox("Item Purchased", df['Item Purchased'].unique())
122
+ previous_purchases = st.number_input("Previous Purchases", min_value=0, max_value=100, value=10)
123
+ frequency_of_purchases = st.selectbox("Frequency of Purchases", df['Frequency of Purchases'].unique().astype(str))
124
+ purchase_amount = st.number_input("Purchase Amount (USD)", min_value=1, max_value=500, value=50)
125
+
126
+ if st.button("Predict Sales Trend"):
127
+ user_input = {
128
+ 'Gender': gender,
129
+ 'Item Purchased': item_purchased,
130
+ 'Previous Purchases': previous_purchases,
131
+ 'Frequency of Purchases': frequency_of_purchases,
132
+ 'Purchase Amount (USD)': purchase_amount
133
+ }
134
+
135
+ predicted_cluster = predict_cluster(user_input)
136
+ st.write(f"Predicted Cluster: {predicted_cluster}")
137
+
138
+ st.subheader(f"Sales Trend Analysis for Cluster {predicted_cluster}")
139
+ cluster_data = df[df['Cluster'] == predicted_cluster]
140
+
141
+ # Visualization of top-selling items in the cluster
142
+ fig, ax = plt.subplots(figsize=(10, 5))
143
+ sns.countplot(y=cluster_data['Item Purchased'], order=cluster_data['Item Purchased'].value_counts().index, palette='viridis', ax=ax)
144
+ ax.set_title("Top Selling Items in This Cluster")
145
+ ax.set_xlabel("Count")
146
+ ax.set_ylabel("Item Purchased")
147
+ st.pyplot(fig)
148
+
149
+ # Display average purchase amount trend
150
+ avg_purchase_amount = cluster_data.groupby('Item Purchased')['Purchase Amount (USD)'].mean()
151
+ st.write("### Average Purchase Amount for Items in This Cluster:")
152
+ st.write(avg_purchase_amount)
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ streamlit
2
+ pandas
3
+ numpy
4
+ matplotlib.pyplot
5
+ seaborn
6
+ scilkt-learn
shopping_trends.csv ADDED
The diff for this file is too large to render. See raw diff