final
Browse files- app.py +91 -0
- decision_tree_model.pkl +3 -0
- file.csv +0 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import joblib
|
4 |
+
import seaborn as sns
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
from sklearn.tree import DecisionTreeClassifier
|
8 |
+
from sklearn.preprocessing import LabelEncoder
|
9 |
+
|
10 |
+
st.title("π Online Shopping Recommendation System")
|
11 |
+
|
12 |
+
# Load dataset
|
13 |
+
csv_path = "file.csv"
|
14 |
+
df = pd.read_csv(csv_path)
|
15 |
+
|
16 |
+
# Handle categorical columns by encoding them
|
17 |
+
label_encoders = {}
|
18 |
+
for col in df.select_dtypes(include=['object']).columns:
|
19 |
+
le = LabelEncoder()
|
20 |
+
df[col] = le.fit_transform(df[col])
|
21 |
+
label_encoders[col] = le
|
22 |
+
|
23 |
+
# Select relevant features
|
24 |
+
features = ['Avg_Price', 'Delivery_Charges', 'Discount_pct', 'Online_Spend', 'Offline_Spend', 'Tenure_Months']
|
25 |
+
target = 'Coupon_Status'
|
26 |
+
|
27 |
+
df = df.dropna() # Remove missing values
|
28 |
+
X = df[features]
|
29 |
+
y = df[target]
|
30 |
+
|
31 |
+
# Split data into train and test sets
|
32 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
33 |
+
|
34 |
+
# Train Decision Tree model
|
35 |
+
model = DecisionTreeClassifier()
|
36 |
+
model.fit(X_train, y_train)
|
37 |
+
|
38 |
+
# Save the model
|
39 |
+
joblib.dump(model, "decision_tree_model.pkl")
|
40 |
+
|
41 |
+
# Streamlit app with three tabs
|
42 |
+
tab1, tab2, tab3 = st.tabs(["π Dataset & Summary", "π Data Visualization", "π Prediction"])
|
43 |
+
|
44 |
+
# Tab 1: Dataset & Summary
|
45 |
+
with tab1:
|
46 |
+
st.subheader("Dataset Overview")
|
47 |
+
st.write(df) # Show full dataset
|
48 |
+
st.write("### Summary Statistics")
|
49 |
+
st.write(df.describe())
|
50 |
+
|
51 |
+
# Tab 2: Data Visualization
|
52 |
+
with tab2:
|
53 |
+
st.subheader("π Correlation Matrix")
|
54 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
55 |
+
sns.heatmap(df.corr(), annot=True, cmap="coolwarm", fmt=".2f", ax=ax)
|
56 |
+
st.pyplot(fig)
|
57 |
+
|
58 |
+
st.subheader("π Pairplot")
|
59 |
+
pairplot_fig = sns.pairplot(df[features])
|
60 |
+
st.pyplot(pairplot_fig)
|
61 |
+
|
62 |
+
st.subheader("π Feature Importance (Decision Tree)")
|
63 |
+
feature_importance_fig, ax = plt.subplots()
|
64 |
+
feature_importances = pd.Series(model.feature_importances_, index=features)
|
65 |
+
feature_importances.nlargest(6).plot(kind='barh', ax=ax)
|
66 |
+
st.pyplot(feature_importance_fig)
|
67 |
+
|
68 |
+
# Tab 3: Prediction
|
69 |
+
with tab3:
|
70 |
+
st.subheader("π Make a Prediction")
|
71 |
+
|
72 |
+
# User inputs
|
73 |
+
avg_price = st.number_input("Average Price of Product", min_value=0.0, step=1.0)
|
74 |
+
delivery_charges = st.number_input("Delivery Charges", min_value=0.0, step=0.5)
|
75 |
+
discount_pct = st.number_input("Discount Percentage", min_value=0.0, max_value=100.0, step=1.0)
|
76 |
+
online_spend = st.number_input("Online Spend", min_value=0.0, step=10.0)
|
77 |
+
offline_spend = st.number_input("Offline Spend", min_value=0.0, step=10.0)
|
78 |
+
tenure = st.number_input("Tenure in Months", min_value=0, step=1)
|
79 |
+
|
80 |
+
if st.button("Predict Coupon Usage"):
|
81 |
+
# Load trained model
|
82 |
+
model = joblib.load("decision_tree_model.pkl")
|
83 |
+
|
84 |
+
# Make prediction
|
85 |
+
prediction = model.predict([[avg_price, delivery_charges, discount_pct, online_spend, offline_spend, tenure]])
|
86 |
+
|
87 |
+
# Display result
|
88 |
+
if prediction[0] == 1:
|
89 |
+
st.success("The customer is likely to use the coupon! π")
|
90 |
+
else:
|
91 |
+
st.warning("The customer may not use the coupon.")
|
decision_tree_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3762309125ef413b35393051171c87e08b80b1746b89fbb4f6a68a70ed2de28
|
3 |
+
size 3289825
|
file.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
joblib
|
4 |
+
seaborn
|
5 |
+
matplotlib
|
6 |
+
scikit-learn
|